www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Differenzengleichung
Differenzengleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:40 Sa 09.05.2009
Autor: pusteblume86

Aufgabe
Im folgenden gelte immer: [mm] n\in \IN! [/mm]
Seien [mm] \alpha_{n}, \beta_{n} [/mm] vorgegebene Folgen

[mm] a_{n } [/mm] sei Lösung der Differenzengleichung [mm] a_{n+1}=\alpha_{n}*a_{n}+\beta_{n} [/mm]

Bestimmen sie im allgemeinen Fall, wenn [mm] \alpha_{n} [/mm] eine beliebig vorgegebene reele Folge ist, das expilzite Bildungsgesetz für [mm] a_{n } [/mm] und beweisen sie es.

Ich habe diese Aufgabe angefangen und folgendes erhalten:

Zunächst hab ich mir die ersten Folgenglieder angeschaut:

[mm] a_{1}= \alpha_{0}*a_{0}+\beta_{0} [/mm]
[mm] a_{2}= \alpha_{1}*a_{1}+\beta_{1} [/mm]
[mm] a_{3}= \alpha_{2}*a_{2}+\beta_{2} [/mm]
[mm] a_{4}= \alpha_{3}*a_{3}+\beta_{3} [/mm]
[mm] a_{5}= \alpha_{4}*a_{4}+\beta_{4} [/mm]

und dann folgendes gemacht:

[mm] a_{1}= \alpha_{0}*a_{0}+\beta_{0} [/mm]

[mm] a_{2}= \alpha_{1}*[\alpha_{0}*a_{0}+\beta_{0}]+\beta_{1} [/mm]
= [mm] \alpha_{1}*\alpha_{0}*a_{0}+\alpha_{1}*\beta_{0}+\beta_{1} [/mm]

[mm] a_{3}= \alpha_{2}*[\alpha_{1}*\alpha_{0}*a_{0}+\alpha_{1}*\beta_{0}+\beta_{1}]+\beta_{2} [/mm]
= [mm] \alpha_{2}*\alpha_{1}*\alpha_{0}*a_{0}+\alpha_{2}*\alpha_{1}*\beta_{0}+\alpha_{2}*\beta_{1}+\beta_{2} [/mm]


Das ganze habe ich dann sogar noch bis [mm] a_{5} [/mm] und natrlich lassen sich regelmäßigkeiten erkennen, die man verm dann ganz einfach in eine Summen/Produktformel zusammenfassen kann, aber hier bin ich irgendie unfähig zu;D

Kann mir jemand helfen, wie man nun weiter vorgehen muss?

EDIT:

So ich habe meine Ideen ausgebaut:)

ich glaube folgende Regelmäßigkeit erkennen zu können:

$ [mm] a_{n}=\alpha_{n-1}\alpha_{n-2}\cdot{}...\cdot{}\alpha_{0}a_{0}+\alpha_{n-1}\alpha_{n-2}\cdot{}...\cdot{}\alpha_{1}\beta_{0} [/mm] $ + $ [mm] \alpha_{n-1}\alpha_{n-2}\cdot{}...\cdot{}\alpha_{2}\beta_{1} [/mm] $ + .....+ $ [mm] \alpha_{n-1}\beta_{n-2} [/mm] $ + $ [mm] \beta_{n-1} [/mm] $

Nur bekomm ich es nicht hin, dass in Summenschreibweise aufzustellen und "zu vereinfachen".

Könnt ihr mir da helfen oder einen tipp geben?

Viele Grüße

Sandra


        
Bezug
Differenzengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 12.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de