www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differenzialgleichung lösen
Differenzialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mi 23.11.2016
Autor: Kruemelmonster2

Aufgabe
Skizzieren Sie zunächst die Lösungsgesamtheit zur DGL

[mm] $\dot{x}=x(x-1)(2-x) [/mm] $

und lösen Sie anschließend explizit.


Irgendwie geht das ganze bei mir nicht auf. Ich habe das ganze wie folgt gelöst:

[mm] $\frac{dx}{dt}&=x\left(x-1\right)\left(2-x\right) \\ [/mm]

[mm] \Leftrightarrow\frac{dx}{dt}\cdot \frac{1}{x\left(x-1\right)\left(2-x\right)}&=1\\ [/mm]

[mm] \Leftrightarrow\frac{1}{x\left(x-1\right)\left(2-x\right)}dx&=1dt\\ [/mm]

[mm] \Leftrightarrow \int\frac{1}{x\left(x-1\right)\left(2-x\right)}dx&=\int1dt$ [/mm]

Partialbruchzerlegung:

[mm] $\frac{1}{x\left(x-1\right)\left(2-x\right)}=\frac{A}{x}+\frac{B}{\left(x-1\right)}+\frac{C}{\left(2-x\right)}$ [/mm]

[mm] $\Rightarrow A=-\frac{1}{2}; [/mm] B=1; [mm] C=\frac{1}{2}$ [/mm]


Damit hab ich dann:

[mm] $\int\frac{1}{x\left(x-1\right)\left(2-x\right)} [/mm]

[mm] =&\int-\frac{1}{2x}+\int\frac{1}{x-1}+\int\frac{1}{2\left(2-x\right)}\\ [/mm]

[mm] =&-\frac{1}{2}\int\frac{1}{x}+\int\frac{1}{x-1}+\frac{1}{2}\int\frac{1}{2-x}\\ [/mm]

[mm] =&-\frac{1}{2}\log\left(\left|x\right|\right)+\log\left(\left|x-1\right|\right)+\frac{1}{2}\log\left(\left|2-x\right|\right)\\ [/mm]

[mm] =&\frac{1}{2}\left(\log\left(\left|2-x\right|\right)-\log\left(\left|x\right|\right)\right)+\log\left(\left|x-1\right|\right)$ [/mm]

Nun müsste ich das ganze ja noch nach $x$-Auflösen, dies gelingt mir jedoch nicht:

[mm] $\frac{1}{2}\left(\log\left(2-x\right)-\log\left(x\right)\right)+\log\left(x-1\right)+C =&t\\ [/mm]

[mm] \Leftrightarrow\log\left(2-x\right)-\log\left(x\right)+2\log\left(x-1\right)+2C =&2t\\ [/mm]

[mm] \Leftrightarrow e^{\log\left(2-x\right)-\log\left(x\right)+2\log\left(x-1\right)+2C} =&e^{2t}\\ [/mm]

[mm] \Leftrightarrow \left(2-x\right)\cdot\frac{1}{x}\cdot\left(x-1\right)^{2}\cdot e^{2C}=&e^{2t}\\ [/mm]

[mm] \Leftrightarrow\frac{\left(2-x\right)\cdot\left(x-1\right)^{2}}{x} =&\frac{e^{2t}}{e^{2C}}\\ [/mm]

[mm] \Leftrightarrow \frac{\left(2-x\right)\cdot\left(x-1\right)^{2}}{x}=&e^{2\left(t-C\right)}$ [/mm]


Egal was ich hier versuche, es bleibt immer ein [mm] $\frac{1}{x}$ [/mm] stehen und ich kann den Term nicht zu einem einzlenen $x$ umstellen. Hab ich einen Fehler gemacht oder übersehe ich etwas?

Liebe Grüße
Krümmelmonster

        
Bezug
Differenzialgleichung lösen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:42 Mi 23.11.2016
Autor: M.Rex

Hallo.

Warum so kompliziert, du hast doch schon die Trennung der Variablen erreicht.

Du hast [mm] \dot{x}=x\cdot(x-1)\cdot(2-x) [/mm]

Die Rechte Seite kannst du auflösen, und bekommst dann
[mm] \dot{x}=-x^{3}+3x^{2}-2x [/mm]

Und eine Funktion zu finden, deren Ableitung [mm] -x^{3}+3x^{2}-2x [/mm] beträgt, sollte kein Problem darstellen.

Marius

Bezug
                
Bezug
Differenzialgleichung lösen: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:54 Mi 23.11.2016
Autor: Chris84


> Hallo.
>  
> Warum so kompliziert, du hast doch schon die Trennung der
> Variablen erreicht.
>  
> Du hast [mm]\dot{x}=x\cdot(x-1)\cdot(2-x)[/mm]
>  
> Die Rechte Seite kannst du auflösen, und bekommst dann
>  [mm]\dot{x}=-x^{3}+3x^{2}-2x[/mm]
>  
> Und eine Funktion zu finden, deren Ableitung
> [mm]-x^{3}+3x^{2}-2x[/mm] beträgt, sollte kein Problem darstellen.
>  
> Marius

Hallo Marius,
ich kann mich ganz stark irren, aber ich glaube, dir ist ein kleiner Fehler unterlaufen.

Tatsaechlich ist die unabhaengige Variable $t$ und die abhaengige $x$, dort steht NICHT

[mm] $f'(x)=-x^{3}+3x^{2}-2x$, [/mm]

sondern

[mm] $\dot{x}(t)=-x^{3}(t)+3x^{2}(t)-2x(t)$. [/mm]

Damit funktioniert dein Ansatz leider nicht....

Trennung der Variablen ist schon gut und richtig!

(Habe mir den Loesungsweg leider noch nicht weiter angeschaut :) )

Gruss,
Chris

Bezug
        
Bezug
Differenzialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Do 24.11.2016
Autor: Chris84


> Skizzieren Sie zunächst die Lösungsgesamtheit zur DGL
>  
> [mm]\dot{x}=x(x-1)(2-x)[/mm]
>  
> und lösen Sie anschließend explizit.
>  
> Irgendwie geht das ganze bei mir nicht auf. Ich habe das
> ganze wie folgt gelöst:
>  
> [mm]$\frac{dx}{dt}&=x\left(x-1\right)\left(2-x\right) \\[/mm]
>  
> [mm]\Leftrightarrow\frac{dx}{dt}\cdot \frac{1}{x\left(x-1\right)\left(2-x\right)}&=1\\[/mm]
>  
> [mm]\Leftrightarrow\frac{1}{x\left(x-1\right)\left(2-x\right)}dx&=1dt\\[/mm]
>  
> [mm]\Leftrightarrow \int\frac{1}{x\left(x-1\right)\left(2-x\right)}dx&=\int1dt$[/mm]
>  
> Partialbruchzerlegung:
>  
> [mm]\frac{1}{x\left(x-1\right)\left(2-x\right)}=\frac{A}{x}+\frac{B}{\left(x-1\right)}+\frac{C}{\left(2-x\right)}[/mm]
>  
> [mm]\Rightarrow A=-\frac{1}{2}; B=1; C=\frac{1}{2}[/mm]

Huhu,
ich habe A=C=-1/2 und B=1. Damit ergibt sich eine Gleichung, die deutlich netter zu loesen sein wird :)

Gruss,
Chris

>  
>
> Damit hab ich dann:
>  
> [mm]$\int\frac{1}{x\left(x-1\right)\left(2-x\right)}[/mm]
>
> [mm]=&\int-\frac{1}{2x}+\int\frac{1}{x-1}+\int\frac{1}{2\left(2-x\right)}\\[/mm]
>  
> [mm]=&-\frac{1}{2}\int\frac{1}{x}+\int\frac{1}{x-1}+\frac{1}{2}\int\frac{1}{2-x}\\[/mm]
>  
> [mm]=&-\frac{1}{2}\log\left(\left|x\right|\right)+\log\left(\left|x-1\right|\right)+\frac{1}{2}\log\left(\left|2-x\right|\right)\\[/mm]
>  
> [mm]=&\frac{1}{2}\left(\log\left(\left|2-x\right|\right)-\log\left(\left|x\right|\right)\right)+\log\left(\left|x-1\right|\right)$[/mm]
>  
> Nun müsste ich das ganze ja noch nach [mm]x[/mm]-Auflösen, dies
> gelingt mir jedoch nicht:
>  
> [mm]$\frac{1}{2}\left(\log\left(2-x\right)-\log\left(x\right)\right)+\log\left(x-1\right)+C =&t\\[/mm]
>  
> [mm]\Leftrightarrow\log\left(2-x\right)-\log\left(x\right)+2\log\left(x-1\right)+2C =&2t\\[/mm]
>  
> [mm]\Leftrightarrow e^{\log\left(2-x\right)-\log\left(x\right)+2\log\left(x-1\right)+2C} =&e^{2t}\\[/mm]
>  
> [mm]\Leftrightarrow \left(2-x\right)\cdot\frac{1}{x}\cdot\left(x-1\right)^{2}\cdot e^{2C}=&e^{2t}\\[/mm]
>  
> [mm]\Leftrightarrow\frac{\left(2-x\right)\cdot\left(x-1\right)^{2}}{x} =&\frac{e^{2t}}{e^{2C}}\\[/mm]
>  
> [mm]\Leftrightarrow \frac{\left(2-x\right)\cdot\left(x-1\right)^{2}}{x}=&e^{2\left(t-C\right)}$[/mm]
>  
>
> Egal was ich hier versuche, es bleibt immer ein [mm]\frac{1}{x}[/mm]
> stehen und ich kann den Term nicht zu einem einzlenen [mm]x[/mm]
> umstellen. Hab ich einen Fehler gemacht oder übersehe ich
> etwas?
>  
> Liebe Grüße
>  Krümmelmonster


Bezug
                
Bezug
Differenzialgleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:43 Fr 25.11.2016
Autor: Kruemelmonster2

Hey vielen Dank.
Durch das "-" wird es tatsächlich deutlich einfacher.

Mfg. Kruemelmonster

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de