www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differenzialgleichung n-ter O
Differenzialgleichung n-ter O < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung n-ter O: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 22.11.2008
Autor: marko1612

Aufgabe
Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen an:
a) y''+y'-2y = 0,
b) 2y''-5y'+2y = 0,
c) y''-4y'+5y = 0,
d) [mm] y^{(4)}-y [/mm] = 0,
e) [mm] y^{(4)}+2y''+y [/mm] = 0.

Meine Lösungen:

a)  

[mm] \lambda² [/mm] + [mm] \lambda [/mm] - 2 = 0

[mm] \lambda_{1} [/mm] = -2
[mm] \lambda_{2} [/mm] = 1

y(t) = [mm] C_{1}e^{-2t}+C_{2}e^{t} [/mm]

-------------------------------------------------------------------------------------------
b)

[mm] 2\lambda² [/mm] - [mm] 5\lambda [/mm] + 2 = 0

[mm] \lambda_{1} [/mm] = 2
[mm] \lambda_{2} [/mm] = 0,5

y(t) = [mm] C_{1}e^{2t}+C_{2}e^{\bruch{1}{2}t} [/mm]

--------------------------------------------------------------------------------------------
c)

[mm] \lambda² [/mm] - [mm] 4\lambda [/mm] + 5 = 0

[mm] \lambda_{1} [/mm] = 2+i
[mm] \lambda_{2} [/mm] = 2-i

Was kommt jetzt für eine Lösung raus? Mit dem Imaginärteil wird das ja etwas anders.

--------------------------------------------------------------------------------------------
d)

[mm] \lambda^{4} [/mm] - 1 = 0

[mm] \lambda_{1} [/mm] = 1
[mm] \lambda_{2} [/mm] = i
[mm] \lambda_{3} [/mm] = -i
[mm] \lambda_{4}= [/mm] 1

Hier das gleiche Problem wie bei c)

--------------------------------------------------------------------------------------------
e)

[mm] \lambda^{4} [/mm] + [mm] 2\lambda [/mm] + 1 = 0

[mm] \lambda_{1} [/mm] = i
[mm] \lambda_{2} [/mm] = -i
[mm] \lambda_{3} [/mm] = i
[mm] \lambda_{4}= [/mm] -i

Was kommt als Lösung raus?

Danke für eure Hilfe.

        
Bezug
Differenzialgleichung n-ter O: Tipps
Status: (Antwort) fertig Status 
Datum: 15:27 Sa 22.11.2008
Autor: Infinit

Hallo marko1612,
auch mit komplexen Nullstellen kommst Du durchaus auf reelle Lösungen, da die Nullstellen konjugiert komplex zueinander sind. Denke bitte dran, dass dieser Ansatz über die e-Funktion läuft und da gibt es so was wie die Formel von Moivre, die den Zusammenhang herstellt zwischen einer e-Funktion mit komplexem Argument und den trigonometrischen Funktionen.
Generell gilt, dass bei einem Paar konjugiert komplexer Nullstellen, also
$$ [mm] \lambda_1 [/mm] = [mm] \alpha [/mm] + i [mm] \beta [/mm] $$ und
$$ [mm] \lambda_2 [/mm] = [mm] \alpha [/mm] - i [mm] \beta [/mm] $$ die Lösungen der DGL lauten
$$ [mm] e^{\alpha x} \cos (\beta [/mm] x) $$ und
$$ [mm] e^{\alpha x} \sin (\beta [/mm] x) $$
Die Lösung für c) sieht Du jetzt sofort.

Treten zweifache Nullstellen auf, wie bei Aufgabe d) und e), so sind die linear unabhängigen Lösungen der DGL der normale Lösungssatz sowie der mit x multiplizierte Lösungssatz. Zur doppelt auftretenden 1 in d) gehören also [mm] e^x [/mm] und [mm] x \cdot e^x [/mm] als Lösungen.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de