www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenzialrechnung
Differenzialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Mi 01.03.2006
Autor: Honey88

Aufgabe
In welchem Punkt ist die Tangente an das Schaubild der Funtion f parallel zu der Geraden g: [mm] y=\bruch{1}{2}x-4? [/mm]
a) [mm] f(x)=x^{3}-x [/mm]

hi
also ich brauch doch erstmal die ableitungen oder?
[mm] f^{'}=3x^{2} [/mm]
[mm] g^{'}=\bruch{1}{2} [/mm]
so, und dann muss ich die zwei doch gleichsetzen oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzialrechnung: Idee richtig - Ableitung nicht
Status: (Antwort) fertig Status 
Datum: 15:40 Mi 01.03.2006
Autor: Roadrunner

Hallo Honey,

[willkommenmr] !!


Die Idee mit den beiden Ableitungen und dem Gleichsetzen ist völlig richtig [ok] .

Allerdings hast Du bei der Ableitung von $f(x)_$ einen kleinen Fehler gemacht: was ist denn mit dem Term $... \ -x$ beim Ableiten?


Also muss es heißen: $f'(x) \ = \ [mm] 3x^2 [/mm] \ ...$ ?


Gruß vom
Roadrunner


Bezug
                
Bezug
Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 01.03.2006
Autor: Honey88

[mm] f^{'}(x)=3x^{2}-1 [/mm] ?

Bezug
                        
Bezug
Differenzialrechnung: Richtig!
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 01.03.2006
Autor: Roadrunner

Hallo Honey!


So stimmt es [daumenhoch] !


Gruß vom
Roadrunner


Bezug
        
Bezug
Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 01.03.2006
Autor: Honey88

also dann müsste da ja dann nach dem gleichsetzen [mm] x=\wurzel{\bruch{1}{2}} [/mm] rauskommen. das müsste ich doch dann in eine normal funktion einsetzen oder?
ich weiß acuh nicht,bei den lösungen hinten im buch steht [mm] P_{1}(\bruch{1}{2}*\wurzel{2}/-\bruch{1}{4}*\wurzel{2}) [/mm] , [mm] P_{2}(-\bruch{1}{2}*\wurzel{2}/\bruch{1}{4}*\wurzel{2}) [/mm]
also das ist bei mir nicht so :-(

Bezug
                
Bezug
Differenzialrechnung: Hinweise
Status: (Antwort) fertig Status 
Datum: 16:09 Mi 01.03.2006
Autor: Roadrunner

Hallo Honey!


Zum einen kann man den Ausdruck [mm] $\wurzel{\bruch{1}{2}}$ [/mm] umformen:

[mm] $\wurzel{\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{\wurzel{1}}{\wurzel{2}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}}*\blue{\bruch{\wurzel{2}}{\wurzel{2}}} [/mm] \ = \ [mm] \bruch{\wurzel{2}}{2} [/mm] \ = \ [mm] \bruch{1}{2}*\wurzel{2}$ [/mm]


Zum anderen unterschlägst Du beim Wurzelziehen der Gleichung [mm] $x^2 [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm] , dass es zwei Lösungen gibt: eine positive und eine negative.


Gruß vom
Roadrunner


Bezug
                        
Bezug
Differenzialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 Mi 01.03.2006
Autor: Honey88

:-)
achso.danke
ich wär da aber niemals draufgekommen auf so was. ohje ....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de