www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Differenzialrechnung
Differenzialrechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialrechnung: Brücke Parabelform
Status: (Frage) beantwortet Status 
Datum: 21:52 Mi 09.11.2011
Autor: Donalmick

Aufgabe 1
Um einen reibungslosen Schiffsverkehr im Hafenbecken zu ermöglichen, wurde in Duisburg eine bewegliche Fußgängerbrücke erdacht. Bei Bedarf kann sie sich unterschiedlich stark krümmen und sich zu einem Buckel formen. Die Pfeiler der Hängebrücke werden dabei von vier Hydraulikzylindern immer weiter nach außen gezogen. Dadruch spannen sich die beien Tragseile und der damit verbundene Fußweg wird nach oben gezogen. Das Tragwerk und der Fußweg bilden dabei jeweils unterschiedlich gekrümmte Parabeln.
Wenn die Brücke in eine mittlere Stellung gezogen wird, liegt ihr Scheitelpunkt etwa 4.50m über dem Normalniveau, in der höchsten Lage sind es 9 Meter und der Steigungswinkel Alpha des Fußweges erreicht dabei fast 45°. Die gesamte Spannweite der Brücke beträgt 73.72m.

Überprüfe die Aussage über den Steigungswinkel Alpha durch eigene Berechnungen.

Aufgabe 2
Brücke Parabelform: Höhe = 19m; Breite = 38m

A: Bestimme die Parabelgleichung
B: In welchem Winkel trifft der Bogen auf das Wasser?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Frage von Aufgabe 1 denke ich, ist verständlich.

Bei Aufgabe 2 möchte ich gerne wissen, welche zusätzliche Informationen ich noch für A und insbesondere B benötige und schließlich den Rechenweg.

Ich weiß insofern soviel, dass ich bei beiden Aufgaben erstmal die Breite halbieren sollte. Zudem muss ich noch mit f(x)= [mm] a+x^2 [/mm] und dem Tangens von f'(x) sowie m arbeiten, weiß allerdings nicht, wo und wie genau.

Würde mich sehr über die Rechenwege freuen!

        
Bezug
Differenzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 09.11.2011
Autor: leduart

Hallo
deine parabeln sind nicht [mm] y=x^2+a [/mm] sondern [mm] y=ax^2+b [/mm]
du legst die Mitte bei x=0 dann hast du schon b weil du die höhe kennst. bei der halben Breite ist die Nullstelle, dadurch hast du a.
jetzt suchst du die Steigung an der Nullstelle.
weitere Informationen braucht man nicht!
in 1 hast du 2 verschiedene a
gruss leduart


Bezug
                
Bezug
Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 09.11.2011
Autor: Donalmick

Und was ist a und was ist b?

Dann wäre a 18, aber was b ist und wie mir da die Mitte bei x=0 hilft, weiß ich nicht. Und erst recht nicht, wie ich die Steigung berechnen soll. Und was meinst du mit zwei verschiedenen a's?

In Mathe bin ich überhaupt keine Leuchte, sorry! :(

Bezug
                        
Bezug
Differenzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Do 10.11.2011
Autor: leduart

Hallo
du hast ne parabel symmetrisch zur y achse, d.h. sie hat ihren höchsten punkt bei x=0
die parabel hat die allgemeine form [mm] y=ax^2+b [/mm]
bei x=0 ist die höhe also y=19 also 19=a*0+b  b=19
bei [mm] x=\pm [/mm] 38/2 ist die Höhe also y= 0
also [mm] 0=a*19^2+19 [/mm] daraus a bestimmen.
wie bestimmt man die Steigung einer Kurve? deine überschrift war Differenzialrechnung!
und du sollst die Steigung bestimmen, da wo y=0 ist!
mach ausserdem ne skizze in ein xy koordinatennetz.
"In Mathe bin ich überhaupt keine Leuchte" heißt meist nur. ich will nicht nachdenken, und schau mir nicht an, was wie bisher gemacht haben. für mathe 1 muss man vielleicht ne "leuchte" sein für 2-3 reicht der Wille zum lernen und denken garantiert!
Gruss leduart


Bezug
                                
Bezug
Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 Do 10.11.2011
Autor: Donalmick

Das heißt also, dass die Mitte der Parabel direkt auf der Y-Achse liegt? Okay!

Und Steigung der Kurve bei y=0 bedeutet, dass ich genau durch diesen Punkt eine Tangente zeichnen kann und dann Delta y: Delta x. Rechnerisch gesehen stehe ich da allerdings etwas auf dem Schlauch. Muss ich dafür etwas mit der Formel y= [mm] a*x^2+b [/mm] anfangen?

Und zur Leuchte: Am Lernen liegt's, denke ich mal, nicht. Sonst würden die ganzen Lernfächer wie z.B Geschichte bei mir auch schlecht ausfallen. Das Gespür für Zahlen ist einfach nicht vorhanden! Und mein Nachhilfelehrer ist auch völlig unerwartet verstorben. Mit dem waren die Noten im 2er- und 3er-Bereich. Jetzt bin ich halt gerade auf der Sche nach einem Neuen.

EDIT: Ähm, jetzt bin ich grad etwas verwirrt. Wenn der höchste Punkt x=0 ist, wie kann die Höhe dann y=19 sein? Liegen beide ja dann im Prinzip auf der y-Achse. Und unter Höhe y=19m verstehe ich gleichzeitig, dass der höchste Punkt y=19m ist.

Bezug
                                        
Bezug
Differenzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:47 Do 10.11.2011
Autor: fred97


> Das heißt also, dass die Mitte der Parabel direkt auf der
> Y-Achse liegt? Okay!

Der Scheitel der Parabel liegt auf der y - Achse

>  
> Und Steigung der Kurve bei y=0 bedeutet, dass ich genau
> durch diesen Punkt eine Tangente zeichnen kann und dann
> Delta y: Delta x. Rechnerisch gesehen stehe ich da
> allerdings etwas auf dem Schlauch. Muss ich dafür etwas
> mit der Formel y= [mm]a*x^2+b[/mm] anfangen?

Erstmal a und b bestimmen. Dann Nullstellen der Parabel finden. Dann die Ableitung in den Nullstellen berechnen

>  
> Und zur Leuchte: Am Lernen liegt's, denke ich mal, nicht.
> Sonst würden die ganzen Lernfächer wie z.B Geschichte bei
> mir auch schlecht ausfallen. Das Gespür für Zahlen ist
> einfach nicht vorhanden! Und mein Nachhilfelehrer ist auch
> völlig unerwartet verstorben. Mit dem waren die Noten im
> 2er- und 3er-Bereich. Jetzt bin ich halt gerade auf der
> Sche nach einem Neuen.
>  
> EDIT: Ähm, jetzt bin ich grad etwas verwirrt. Wenn der
> höchste Punkt x=0 ist, wie kann die Höhe dann y=19 sein?

Wir hatten: [mm] y(x)=ax^2+19 [/mm] (a solltest Du noch bestimmen)

y(0)=19.

FRED

> Liegen beide ja dann im Prinzip auf der y-Achse. Und unter
> Höhe y=19m verstehe ich gleichzeitig, dass der höchste
> Punkt y=19m ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de