www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbare Funktion
Differenzierbare Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbare Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 28.04.2006
Autor: Doreen

Aufgabe
Sei g: [mm] \IR \to \IR [/mm] eine in [mm] a\in \IR [/mm] differenzierbare Funktion. Zeige:

[mm] \limes_{h\rightarrow0} \bruch{g(a+h)-g(a-h)}{2h} [/mm] = g'(a)

Hallo,

ich bräuchte zu der obigen Aufgabe einen kleinen Tip, wie ich anfangen soll...

Also ich denke mir, dass ich bei dieser allgemeinen Darstellung eine von den Regeln (Produkt-, Ketten-, Quotientenregel) anwenden muss, um von

[mm] \bruch{g(a+h)-g(a-h)}{2h} [/mm]

die erste Ableitung zu bilden.

Ist das mit dieser Aufgabenstellung gesagt?

Vielen Dank
Gruß Doreen

        
Bezug
Differenzierbare Funktion: Differenzenquotient
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 28.04.2006
Autor: Roadrunner

Hallo Doreen!


Die genannten MBAbleitungsregeln brauchst Du hier gar nicht.

Schreibe Dir mal die Definition der Ableitung (sprich: den Differenzenquotienten) für $g'(a)_$ auf. Denn da wollen wir hin.

Umgeformt lautet der zu führende Beweis doch:

[mm]\limes_{h\rightarrow 0} \bruch{g(a+h)-g(a-h)}{h} \ = \ 2*g'(a) \ = \ g'(a)+g'(a)[/mm]


Dann brauchst Du bei diesem Ausdruck nur eine "geeignete Null" addieren (z.B. $-g(a) \ + \ g(a)$ ;-) ...) und den Bruch auseinanderziehen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de