www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 13.08.2015
Autor: Pi_sner

Aufgabe
Beweisen Sie: Sei [mm] $f:\mathbb{R}^n\to\mathbb{R}^n$ [/mm] differenzierbar, dann folgt [mm] $\frac{||f(x+t)-f(x)-f'(x)t||}{||t||}\to [/mm] 0 [mm] (||t||\to [/mm] 0)$ gleichmäßig.

Ich bin hier leider Ideelos. Störe mich sowohl an $-f'(x)t$ im Nenner als auch der geforderten gleichmäßigen Konvergenz. Hat jemand einen Tipp?

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 13.08.2015
Autor: tobit09

Hallo Pi_sner!


Leider habe ich gerade nicht viel Zeit, daher nur knapp als erster Input:

- Wenn du das Wort "gleichmäßig" streichst, kannst du die Behauptung relativ direkt aus der Definition der Differenzierbarkeit folgern.

- Ich bin mir nicht hundertprozentig sicher, ob ich den Begriff der gleichmäßigen Konvergenz hier richtig verstehe: Eigentlich kenne ich ihn nur für Funktionenfolgen, glaube aber, mir die hier passende Definition zusammenreimen zu können.

- Wenn ich damit richtig liege, liefert die Funktion

       [mm] $f\colon\IR\to\IR,\quad f(x)=x^3$ [/mm]

ein Gegenbeispiel zur Behauptung aus der Aufgabenstellung, wie man sich überlegen kann.


Viele Grüße
Tobias

Bezug
        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 14.08.2015
Autor: fred97


> Beweisen Sie: Sei [mm]f:\mathbb{R}^n\to\mathbb{R}^n[/mm]
> differenzierbar, dann folgt
> [mm]\frac{||f(x+t)-f(x)-f'(x)t||}{||t||}\to 0 (||t||\to 0)[/mm]
> gleichmäßig.
>  Ich bin hier leider Ideelos. Störe mich sowohl an [mm]-f'(x)t[/mm]
> im Nenner

Du meinst im Zähler. Aber was stört Dich daran ? Ist $x [mm] \in \IR^n$, [/mm] so heißt f in x differenzierbar, wenn es eine reelle $n [mm] \times [/mm] n$ - Matrix A gibt mit:

[mm] $\frac{||f(x+t)-f(x)-At||}{||t||} \to [/mm] 0$   [mm] ($||t||\to [/mm] 0$).

In diesem Fall ist A eindeutig bestimmt und wird mit $ f'(x)$ bezeichnet.

Du störst Dich also an einer Definition ......





> als auch der geforderten gleichmäßigen
> Konvergenz. Hat jemand einen Tipp?


Zeigen sollst Du:

Zu jedem [mm] \varepsilon [/mm] >0 gibt es ein [mm] \delta [/mm] >0 mit:

   [mm] $\frac{||f(x+t)-f(x)-f'(x)t||}{||t||}< \varepsilon$ [/mm]  für alle $x [mm] \in \IR^n$ [/mm] und alle $t [mm] \in \IR^n$ [/mm] mit $0<||t||< [mm] \delta$. [/mm]


Wie mein Vorredner Tobias schon gesagt hat, kann man das nicht zeigen, denn es ist falsch ! Tobias hat schon ein Gegenbeispiel genannt. Hier noch eines:

Sei n=1 und [mm] f(x)=e^x. [/mm] Wäre die Beh. richtig, so gäbe es zu [mm] \varepsilon=1 [/mm] ein [mm] \delta [/mm] > 0 mit

  [mm] e^x*|\bruch{e^t-1-t}{t}|<1 [/mm]  für alle x [mm] \in \IR [/mm] und alle t [mm] \in \IR [/mm] mit [mm] 0<|t|<\delta, [/mm]

also

  [mm] |\bruch{e^t-1-t}{t}|
Ist  t [mm] \in \IR [/mm] fest und  [mm] 0<|t|<\delta, [/mm] so bekommt man daraus mit $x [mm] \to \infty$ [/mm] :

[mm] |\bruch{e^t-1-t}{t}|=0. [/mm]

Das ist aber absurd.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de