www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differenzierbarkeit
Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 31.01.2005
Autor: KingMob

Hi !
Kann mir bitte jemand bei diesem Beweis hier behilflich sein :
"Sei f : ]a,b[ [mm] \to \IR [/mm] in xo [mm] \in [/mm] ]a,b[ differenzierbar. Man zeige, dass es eine Konstante K [mm] \in {\IR}_{+} [/mm] und ein [mm] \delta [/mm] > 0 gibt, so dass für alle x [mm] \in [/mm] ]a,b[ [mm] \cap [/mm] ] xo - [mm] \delta [/mm] , xo + [mm] \delta [/mm] [ stets | f(x) - f(xo) | < K * | x - xo | gilt."
Bin für jeden Ansatz dankbar!

        
Bezug
Differenzierbarkeit: Differenzenquotient
Status: (Antwort) fertig Status 
Datum: 09:36 Di 01.02.2005
Autor: Gnometech

Guten Morgen!

Zunächst mal soll es mit Sicherheit folgendermaßen aussehen:

$|f(x) - [mm] f(x_0)| \leq [/mm] K [mm] \cdot [/mm] |x - [mm] x_0|$ [/mm]

Denn "echt kleiner" kann man für $x = [mm] x_0$ [/mm] schlecht zeigen, da sind beide Seiten gleich 0. ;-)

Zur eigentlichen Aufgabe: was bedeutet Differenzierbarkeit im Punkt [mm] $x_0$ [/mm] anschaulich? Das heißt doch, dass für jede Folge [mm] $(x_n)_{n \in \IN}$ [/mm] aus $]a,b[$ mit [mm] $\lim_{n \to \infty} x_n [/mm] = [mm] x_0$ [/mm] gilt:

[mm] $\lim_{n \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$ [/mm] existiert und ist unabhängig von der Wahl der Folge.

Der Grenzwert wird dann [mm] $f'(x_0)$, [/mm] der Wert der Ableitung im Punkt [mm] $x_0$ [/mm] getauft.

Wenn Du jetzt diesen Quotienten umformst bist Du schon fast bei der Form wie im Beweis. :-) Das einzige Problem ist noch, dass Du keine Kontrolle darüber hast, wie die Folgen aussehen, also fällt es schwer, ein [mm] $\delta$ [/mm] zu wählen, das für alle Folgen zugleich gilt.

Hier hilft aber ein simpler Trick: beweise die Aussage mit Widerspruch! Nimm an, dass die Aussage nicht gilt, dann findest Du für jedes [mm] $\delta$ [/mm] in dem angegebenen Intervall einen Wert $y$, für den die Ungleichung nicht gilt. Für fallendes [mm] $\delta$ [/mm] kannst Du so eine Folge konstruieren, die gegen [mm] $x_0$ [/mm] läuft, aber für die der Differenzenquotient nicht die gewünschten Eigenschaften hat...

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de