www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 18.01.2011
Autor: Tresche

Aufgabe
Untersuche, ob [mm] f:\IR\to\IR,f(x):=\wurzel{|x|-x} [/mm] an der Stelle 0 differenzierbar ist.

Nabend,

ich hänge gerade an dieser Aufgabe fest.
Also zuerst hab ich mal eine Fallunterscheidung für f(x) durchgeführt:

[mm] f(x)=\begin{cases} 0, & \mbox{für } x \ge \mbox{0 } \\ \wurzel{-2x}, & \mbox{für } x < \mbox{ 0} \end{cases} [/mm]

Jetzt muss man ja schauen, ob [mm] \limes_{h\rightarrow 0}\bruch{f(x+h)-f(x)}{h} [/mm] existiert für x=0:

[mm] \limes_{h\rightarrow 0}\bruch{f(0+h)-f(0)}{h} [/mm] = [mm] \limes_{h\rightarrow 0}\bruch{0-0}{h} [/mm] = ?

Ist die Lösung bis hier hin korrekt? Wenn ja, wie komm ich an den Grenzwert von [mm] \bruch{0}{h} [/mm] ?

Danke schon mal!

Gruß
Tresche

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Di 18.01.2011
Autor: fencheltee


> Untersuche, ob [mm]f:\IR\to\IR,f(x):=\wurzel{|x|-x}[/mm] an der
> Stelle 0 differenzierbar ist.
>  Nabend,
>  
> ich hänge gerade an dieser Aufgabe fest.
>  Also zuerst hab ich mal eine Fallunterscheidung für f(x)
> durchgeführt:
>  
> [mm]f(x)=\begin{cases} 0, & \mbox{für } x \ge \mbox{0 } \\ \wurzel{-2x}, & \mbox{für } x < \mbox{ 0} \end{cases}[/mm]
>  
> Jetzt muss man ja schauen, ob [mm]\limes_{h\rightarrow 0}\bruch{f(x+h)-f(x)}{h}[/mm]
> existiert für x=0:
>  
> [mm]\limes_{h\rightarrow 0}\bruch{f(0+h)-f(0)}{h}[/mm] =
> [mm]\limes_{h\rightarrow 0}\bruch{0-0}{h}[/mm] = ?

wieso steht hier 0-0?
wo ist im zähler das h unter der wurzel hin?

>  
> Ist die Lösung bis hier hin korrekt? Wenn ja, wie komm ich
> an den Grenzwert von [mm]\bruch{0}{h}[/mm] ?
>  
> Danke schon mal!
>  
> Gruß
>  Tresche


gruß tee

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Mi 19.01.2011
Autor: Tresche


>wieso steht hier 0-0?
>wo ist im zähler das h unter der wurzel hin?

Für positive h ist f(0+h) und f(0) doch 0:
$ [mm] f(x)=\begin{cases} 0, & \mbox{für } x \ge \mbox{0 } \\ \wurzel{-2x}, & \mbox{für } x < \mbox{ 0} \end{cases} [/mm] $

Insgesamt also für x=0:
$ [mm] \bruch{f(0+h)-f(0)}{h}=\begin{cases} 0, & \mbox{für } h \ge \mbox{0 } \\ \bruch{\wurzel{-2h}}{h}, & \mbox{für } h < \mbox{ 0} \end{cases} [/mm] $

Muss ich jetzt zeigen, dass auch [mm] \limes_{h\rightarrow 0}\bruch{\wurzel{-2h}}{h} [/mm] gegen [mm] \limes_{h\rightarrow 0}0=0 [/mm] läuft, damit der Grenzwert eindeutig existiert? Wenn ja, wie bestimme ich diesen GW?

Gruß
Tresche


Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mi 19.01.2011
Autor: reverend

Hallo Tresche,

> >wieso steht hier 0-0?
>  >wo ist im zähler das h unter der wurzel hin?
> Für positive h ist f(0+h) und f(0) doch 0:
>  [mm]f(x)=\begin{cases} 0, & \mbox{für } x \ge \mbox{0 } \\ \wurzel{-2x}, & \mbox{für } x < \mbox{ 0} \end{cases}[/mm]

Ja, das ist schon ok. Der Limes ist so ja auch richtig bestimmt, aber es liest sich doch besser, wenn Du erstmal [mm] \wurzel{x-x} [/mm] stehen lässt. Dann ist die Grenzwertbildung besser nachzuvollziehen, oder aber Du stellst obige Fallunterscheidung vorweg.

> Insgesamt also für x=0:
>  [mm]\bruch{f(0+h)-f(0)}{h}=\begin{cases} 0, & \mbox{für } h \ge \mbox{0 } \\ \bruch{\wurzel{-2h}}{h}, & \mbox{für } h < \mbox{ 0} \end{cases}[/mm]
>  
> Muss ich jetzt zeigen, dass auch [mm]\bruch{\wurzel{-2h}}{h}[/mm]
> gegen 0 läuft, damit der Grenzwert eindeutig existiert?
> Wenn ja, wie bestimme ich diesen GW?

Ja, das musst Du zeigen.
Den Grenzwert kannst Du auf zwei Weisen bestimmen, entweder indem Du kürzt, oder indem Du den Satz von l'Hospital anwendest.
Und: er ist nicht Null. Hast Du die Funktion schon mal gezeichnet oder wenigstens skizziert?

Grüße
reverend

> Gruß
>  Tresche
>  


Bezug
                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Mi 19.01.2011
Autor: Tresche


> Ja, das musst Du zeigen.
>  Den Grenzwert kannst Du auf zwei Weisen bestimmen,
> entweder indem Du kürzt, oder indem Du den Satz von
> l'Hospital anwendest.
>  Und: er ist nicht Null. Hast Du die Funktion schon mal
> gezeichnet oder wenigstens skizziert?

Bei Annäherung von links ergibt sich:
[mm] \limes_{h\rightarrow 0} \bruch{\wurzel{-2h}}{h} [/mm] = [mm] \limes_{h\rightarrow 0} \bruch{\wurzel{2}*\wurzel{-h}}{h} [/mm] = [mm] \limes_{h\rightarrow 0} \bruch{-\wurzel{2}}{\wurzel{-h}} \to -\infty [/mm]

Damit ist der Grenzwert bei x=0 nicht eindeutig (0 von rechts und [mm] -\infty [/mm] von links) und somit die Funktion f bei 0 nicht differenzierbar.

Ist die Schlussfolgerung und die Grenzwertbestimmung so korrekt?
Vielen Dank schon mal!

Gruß
Tresche

Bezug
                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 19.01.2011
Autor: reverend

Hallo nochmal,

> > Ja, das musst Du zeigen.
>  >  Den Grenzwert kannst Du auf zwei Weisen bestimmen,
> > entweder indem Du kürzt, oder indem Du den Satz von
> > l'Hospital anwendest.
>  >  Und: er ist nicht Null. Hast Du die Funktion schon mal
> > gezeichnet oder wenigstens skizziert?
>  
> Bei Annäherung von links ergibt sich:
>  [mm]\limes_{h\rightarrow 0} \bruch{\wurzel{-2h}}{h}[/mm] =
> [mm]\limes_{h\rightarrow 0} \bruch{\wurzel{2}*\wurzel{-h}}{h}[/mm] =
> [mm]\limes_{h\rightarrow 0} \bruch{-\wurzel{2}}{\wurzel{-h}} \to -\infty[/mm]
>  
> Damit ist der Grenzwert bei x=0 nicht eindeutig (0 von
> rechts und [mm]-\infty[/mm] von links) und somit die Funktion f bei
> 0 nicht differenzierbar.
>  
> Ist die Schlussfolgerung und die Grenzwertbestimmung so
> korrekt?
>  Vielen Dank schon mal!

Ja, das ist alles richtig so!

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de