www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 20.07.2011
Autor: Semimathematiker

Aufgabe
Für beliebige reelle Zahlen [mm] \alpha [/mm] , x [mm] \in \IR [/mm] mit x > 0 definieren wir [mm] x^\alpha [/mm] := [mm] e^{\alpha lnx} [/mm]  ,
wobei ln: [mm] (0,\infty) \to \IR [/mm] (Log. Naturalis) die Umkehrfkt der e-FKT ist:
[mm] e^{lnx} [/mm] = x, [mm] lne^{x} [/mm] = x

Aufgabe:
Zeigen Sie für jedes [mm] \alpha \in \IR: [/mm]  Die FKT f: [mm] \IR^{*}_{+} [/mm] = [mm] (0,\infty) \to \IR, [/mm] f(x) = [mm] x^{\alpha} [/mm] ist diff´bar mit Ableitung [mm] f^{´}(x) [/mm] = [mm] \alpha x^{\alpha-1} [/mm] . Benutzen Sie die Kettenregel sowie die Ableitung des Logarithmus, [mm] ln^{´}(x) [/mm] = [mm] \bruch{1}{x}. [/mm]

[mm] \bruch{d}{dx}(f(x)) [/mm] = [mm] \bruch{d}{dx}(x^{\alpha}) [/mm] =  [mm] \bruch{d}{dx}(e^{\alpha lnx}) [/mm] =  [mm] \bruch{d}{dx}(e^\underbrace{{lnx + lnx + ... + lnx}_{=\alpha -mal}} [/mm] ) = [mm] \underbrace{e^{lnx} * e^{lnx} * .... * e^{lnx}}_{= \alpha - mal} [/mm] = ?

Hier habe ich einen Hänger. Jetzt müsste ich mit der Kettenregel ableiten. Aber wie? Mir sind bislang noch keine größeren Produkte als [mm] x^{2} [/mm] untergekommen....

Kann mir das mal einer sagen?

Vielen Dank.

        
Bezug
Differenzierbarkeit: Aufteilen
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 20.07.2011
Autor: Semimathematiker

Ich habe eben mal [mm] x^{4} [/mm] differenziert mit Kettenregel.

[mm] x^{4} [/mm] = x*x*x*x [mm] =x^{2} [/mm] * [mm] x^{2} [/mm] = [mm] (x*x)^{2} [/mm]

davon die Ableitung ist

2(x*x)(x+x) =.....= 4 [mm] x^{3} [/mm] , was passt.

Aber wie mache ich das wenn ich es [mm] \alpha [/mm] - mal mache. Ich weiß ja nicht ob nun [mm] \alpha [/mm] eine gerade Zahl ist oder nicht....

?

Bezug
                
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 20.07.2011
Autor: Schadowmaster

Dein [mm] $\alpha$ [/mm] ist nicht nur nicht gerade, dein [mm] $\alpha$ [/mm] muss nichtmal eine natürliche Zahl sein.
Wie genau lautet denn die Kettenregel (in Worten)?
Was ist die Ableitung einer "normalen" e-Funktion [mm] $e^x$ [/mm] ?

Bezug
                        
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mi 20.07.2011
Autor: Semimathematiker

1) Ableitung der äußeren FKT mal Ableitung der inneren FKT.

2) [mm] e^{x} [/mm] * (x)´

Das mit den nicht natürlichen Zahlen ist mir klar....sogar, dass ich [mm] \alpha [/mm] als Re(z) aus [mm] \IC [/mm] auffassen könnte....
ich steh´ trotzdem noch auf dem Schlauch.

Wenn ich [mm] e^{x} [/mm] * [mm] e^{x} [/mm] habe, dann ist das auch kein Thema....aber was wenn ich noch eine dritte, vierte.....n-te e-FKT habe...? Wie ordne ich jetzt meine Kettenglieder an bzw ich hab ja auch noch eine Produktregel zu beachten, nicht?

Bezug
        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 20.07.2011
Autor: Marcel

Hallo,

> Für beliebige reelle Zahlen [mm]\alpha[/mm] , x [mm]\in \IR[/mm] mit x > 0
> definieren wir [mm]x^\alpha[/mm] := [mm]e^{\alpha lnx}[/mm]  ,
> wobei ln: [mm](0,\infty) \to \IR[/mm] (Log. Naturalis) die Umkehrfkt
> der e-FKT ist:
> [mm]e^{lnx}[/mm] = x, [mm]lne^{x}[/mm] = x
>  
> Aufgabe:
>  Zeigen Sie für jedes [mm]\alpha \in \IR:[/mm]  Die FKT f:
> [mm]\IR^{*}_{+}[/mm] = [mm](0,\infty) \to \IR,[/mm] f(x) = [mm]x^{\alpha}[/mm] ist
> diff´bar mit Ableitung [mm]f\;'(x)[/mm] = [mm]\alpha x^{\alpha-1}[/mm] .
> Benutzen Sie die Kettenregel sowie die Ableitung des
> Logarithmus, [mm]ln^{´}(x)[/mm] = [mm]\bruch{1}{x}.[/mm]
>  [mm]\bruch{d}{dx}(f(x))[/mm] = [mm]\bruch{d}{dx}(x^{\alpha})[/mm] =  
> [mm]\bruch{d}{dx}(e^{\alpha lnx})[/mm] =  
> [mm]\bruch{d}{dx}(e^\underbrace{{lnx + lnx + ... + lnx}_{=\alpha -mal}}[/mm]
> ) = [mm]\underbrace{e^{lnx} * e^{lnx} * .... * e^{lnx}}_{= \alpha - mal}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> = ?
>
> Hier habe ich einen Hänger.

kein Wunder: So müßtest Du (mehrfach) die Produktregel anwenden; und es geht so erstmal nicht für alle $\alpha \in \IR\,,$ sondern man müßte es dann "nach und nach hochziehen" (von natürlichen Zahlen auf ganze auf rationale etc.); wobei ich das nicht weiter durchdacht habe.

Du kannst es so angehen: Setze $v(x):=\alpha*\ln(x)$ und $u(v):=e^v\,.$ Dann gilt $\frac{d}{dx}v(x)=v\,'(x)=\alpha/x\,$ und $\frac{d}{dv}u(v)=u'(v)=e^v\,.$

Nach der Kettenregel (beachte: Für alle $x\,$ ist $e^{\alpha \ln(x)}=u(v(x))=(u \circ v)(x)$) gilt ja
$$\frac{d}{dx}u(v(x))=\left.\frac{d}{dv}u(v)\right|_{v=v(x)}*\frac{d}{dx}v(x)=u'(v(x))*v\,'(x)\,.$$

Mit $u'(v)=e^v$ ist neben $v\,'(x)=\alpha/x$ nur noch $u'(v(x))=e^{v(x)}=e^{\alpha*\ln(x)}$ dort einzusetzen. Danach mußt Du noch ein wenig umformen unter Beachtung von

    1.) $e^{\alpha \ln(x)}=(e^{\ln x})^\alpha=x^{\alpha}$

und

    2.) $x^\alpha/x=x^\alpha/x^1=x^{\alpha-1}\,.$

Gruß,
Marcel

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:35 Mi 20.07.2011
Autor: Semimathematiker

Hi,
so hätte ich auch noch argumentieren können. Und so macht´s auch Sinn. Was mir Kopfzerbrechen macht ist, dass mein Tutor tatsächlich die Zeile

" [mm] \underbrace{e^{lnx} \cdot{} e^{lnx} \cdot{} .... \cdot{} e^{lnx}}_{= \alpha - mal} [/mm]  und jetzt die Kettenregel"

hingeschrieben hat...
Ich persönlich finde deine Variante auch wesentlich ansprechender....Substituieren macht das wesentlich einfacher.

Vielen herzlichen Dank.
Semi

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mi 20.07.2011
Autor: Marcel

Hallo,

> Hi,
>  so hätte ich auch noch argumentieren können. Und so
> macht´s auch Sinn. Was mir Kopfzerbrechen macht ist, dass
> mein Tutor tatsächlich die Zeile
>  
> " [mm]\underbrace{e^{lnx} \cdot{} e^{lnx} \cdot{} .... \cdot{} e^{lnx}}_{= \alpha - mal}[/mm]
>  und jetzt die Kettenregel"
>  
> hingeschrieben hat...
> Ich persönlich finde deine Variante auch wesentlich
> ansprechender....Substituieren macht das wesentlich
> einfacher.

dann hat Dein Tutor eigentlich Unsinn verzapft. In dieser Variante (die man so nur für nichtnegative ganze Zahlen machen sollte) geht's mit der Produktregel weiter. Man kann das so erstmal machen, wenn man die Richtigkeit für, wie gesagt, nichtnegative ganze Zahlen der Formel prüfen will.

Wenn man die Kettenregel benutzen will - und eigentlich sehe ich da sonst auch keinen eleganteren Weg, weil da [mm] $\alpha \in \IR$ [/mm] und nicht nur [mm] $\alpha \in \IN$ [/mm] oder [mm] $\alpha \in \IN_0$ [/mm] steht - geht's nur, wenn man eine Verkettung von Funktionen benutzt; das ist eigentlich nicht wirklich eine Substitution, sondern man sieht halt, dass die betrachtete Funktion als Nacheinanderausführung zweier Funktionen, "mit denen man umgehen kann", schreiben kann. (Letzteres meint hier, dass man deren Ableitung kennt; denn diese braucht man ja in der Kettenregel bzgl. Ableitung.)

Aber wichtig ist erstmal, dass Du diesen Weg nun verstanden hast. :-)

Viele Grüße,
Marcel

Bezug
                                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:02 Do 21.07.2011
Autor: Semimathematiker

Mh, ja. Ich weiß was du meinst bzgl der Substitution. Ist nicht so wie bei einer Integration von z. [mm] B.....sin(x^{2})... [/mm] Substitution eher um "einen Überblick" zu wahren und die Aufmerksamkeit auf die äußere- bzw innere FKT zu und die Ableitungsregel zu lenken.
Super, danke. Dann werde ich da noch ein bischen d´ran rumspielen und mich mal auf Samstag freuen ;)

Viele Grüße
Semi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de