www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 16.09.2011
Autor: mathestudent111

Aufgabe
f(x,y) = [mm] \wurzel{|xy|} [/mm]

Zeigen Sie: f ist in (0,0) nicht differenzierbar.

Hallo Leute,

ich sitze gerade vor einem Problem.

Ich soll zeigen, dass f nicht differenzierbar in (0,0) sei.
Der Übungsleiter meinte, wir sollen mit der Restfunktion arbeiten.

R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm] \vmat{ x-0 \\ y-0 } [/mm] = f(x,y)

Dann:

[mm] \limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||} [/mm] = [mm] \limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}} [/mm]

Dann abschätzen:
[mm] \wurzel{\bruch{|xy|}{(x^2+y^2)}} [/mm] < [mm] \wurzel{|xy|} [/mm]

Und:
[mm] \limes_{((x,y)\rightarrow\ 0)} \wurzel{|xy|} [/mm] = 0

Somit ist doch die Voraussetzung für die Differenzierbarkeit gegeben.
Oder irre ich mich da?

Schonmal danke für die Antworten.

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Fr 16.09.2011
Autor: Al-Chwarizmi


> f(x,y) = [mm]\wurzel{|xy|}[/mm]
>  
> Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  Hallo Leute,
>  
> ich sitze gerade vor einem Problem.
>  
> Ich soll zeigen, dass f nicht differenzierbar in (0,0)
> sei.
>  Der Übungsleiter meinte, wir sollen mit der Restfunktion
> arbeiten.


Mal ganz abgesehen von diesem Ratschlag:

es würde doch genügen, zu zeigen, dass die Restriktion
von f auf eine durch (0,0) gehende Gerade, also beispiels-
weise die Gerade mit y=x , im Nullpunkt nicht differenzierbar
ist.

LG    Al-Chw.

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Sa 17.09.2011
Autor: mathestudent111

Aber ich will doch mit der Restfunktion machen...

Oder ist das nicht machbar?

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 17.09.2011
Autor: fred97

Du hast

       [mm] $R(x,y)=\wurzel{\bruch{|xy|}{(x^2+y^2)}}$ [/mm]

Setze mal x=y. Geht R(x,x) gegen 0 für x [mm] \to [/mm] 0 ?

FRED

Bezug
        
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 Sa 17.09.2011
Autor: hippias


> Dann abschätzen:
>  [mm]\wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm] < [mm]\wurzel{|xy|}[/mm]
>  

Das Problem der Deiner Ueberlegung ist, dass diese Abschaetzung nicht richtig ist fuer [mm] $x^2+y^2<1$ [/mm] und das ist genau der Fall, der uns hier interessiert. Auch ich wuerde nicht so gerne mit der Restfunktion machen - klingt irgendwie unanstaendig - sondern eher auch eine bestimmte Gerade betrachten.

Bezug
        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Sa 17.09.2011
Autor: kamaleonti

Moin,
> f(x,y) = [mm]\wurzel{|xy|}[/mm]
>  
> Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  Hallo Leute,
>  
> ich sitze gerade vor einem Problem.
>  
> Ich soll zeigen, dass f nicht differenzierbar in (0,0) sei.
>  Der Übungsleiter meinte, wir sollen mit der Restfunktion
> arbeiten.
>  
> R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm]\vmat{ x-0 \\ y-0 }[/mm] = f(x,y)
>  
> Dann:
>  
> [mm]\limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||}[/mm] = [mm]\limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm]
>  

Um zu zeigen, dass dieser Grenzwert nicht existiert, kannst du auch Folgen in [mm] \IR^2 [/mm] wählen, die gegen (0,0) konvergieren, aber unterschiedliche Grenzwerte liefern.

Beispiel: [mm] a_n=(0,1/n), [/mm] dann [mm] \frac{R(a_n)}{\parallel a_n\parallel}=\wurzel{\bruch{|0*1/n|}{(0^2+(1/n)^2)}}=0\to0,n\to\infty. [/mm]

Und nun noch eine weitere Folge mit anderem Ergebnis. Zum Beispiel [mm] b_n=(1/n,1/n). [/mm] Das liefert [...]


LG

Bezug
                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Sa 17.09.2011
Autor: fred97


> Moin,
>  > f(x,y) = [mm]\wurzel{|xy|}[/mm]

>  >  
> > Zeigen Sie: f ist in (0,0) nicht differenzierbar.
>  >  Hallo Leute,
>  >  
> > ich sitze gerade vor einem Problem.
>  >  
> > Ich soll zeigen, dass f nicht differenzierbar in (0,0)
> sei.
>  >  Der Übungsleiter meinte, wir sollen mit der
> Restfunktion
> > arbeiten.
>  >  
> > R(x,y) = f(x,y) - f(0,0) - [0 0] * [mm]\vmat{ x-0 \\ y-0 }[/mm] =
> f(x,y)
>  >  
> > Dann:
>  >  
> > [mm]\limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||}[/mm] =
> [mm]\limes_{((x,y)\rightarrow\ 0)} \wurzel{\bruch{|xy|}{(x^2+y^2)}}[/mm]
>  
> >  

> Um zu zeigen, dass dieser Grenzwert nicht existiert, kannst
> du auch Folgen in [mm]\IR^2[/mm] wählen, die gegen (0,0)
> konvergieren, aber unterschiedliche Grenzwerte liefern.
>  
> Beispiel: [mm]a_n=(0,1/n),[/mm] dann [mm]\frac{R(a_n)}{\parallel a_n\parallel}=\wurzel{\bruch{|0*1/n|}{(0^2+(1/n)^2)}}=0\to0,n\to\infty.[/mm]
>  
> Und nun noch eine weitere Folge mit anderem Ergebnis. Zum
> Beispiel [mm]b_n=(1/n,1/n).[/mm] Das liefert [...]
>  
>
> LG


  Um zu zeigen, dass f in (0,0) nicht differenzierbar ist, ist zu zeigen, dass


               $ [mm] \limes_{((x,y)\rightarrow\ 0)} \bruch{R(x,y)}{||(x,y)||} \ne [/mm] 0  $

ist (oder der Grenzwert nicht existiert).

Wie man das machen kann habe ich hier



             https://matheraum.de/read?i=820475

erwähnt.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de