www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 25.06.2012
Autor: Stift

Guten Tag, ich habe mit folgender aufgabe probleme
seien I,J offene Intervalle und f: I x [mm] J\to \IR, [/mm] (t,s) sowie [mm] \bruch{\partial f}{\partial x_{2}} [/mm] wir betrachten nun [mm] \gamma [/mm] : I x I x [mm] J\to \IR [/mm]
[mm] (a,b,s)^{T} \to \integral_{a}^{b}{f(t,s) dt} [/mm]
a)Zeigen Sie, dass [mm] \gamma [/mm] differenzierbar ist und bestimmen sie den grad [mm] \gamma. [/mm]
Habe ich schon gemacht. Ich habe probleme mit b und c
b)Seien u,v:J [mm] \to [/mm] I differenzierbar. Bestimmen sie g' für
g: J [mm] \to \IR [/mm]
s [mm] \to \gamma(u(s),v(s),s). [/mm]
Warum ist g differenzierbar?
c) Berechnen Sie für gegebenes h [mm] \in C^{0}(\IR) [/mm] die Ableitungen bis zur Ordnung n [mm] \in \IN [/mm] von
[mm] g_{n}: \IR \to \IR [/mm]
s [mm] \to \integral_{0}^{s}{\bruch{(s-t)^{n}*h(t)}{n!} dt} [/mm]
Also bei b und c blicke ich überhaupt nicht durch.

Gruß

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Mo 25.06.2012
Autor: kamaleonti

Guten Abend,
> Guten Tag, ich habe mit folgender aufgabe probleme
>  seien I,J offene Intervalle und f: I x [mm]J\to \IR,[/mm] (t,s)
> sowie [mm]\bruch{\partial f}{\partial x_{2}}[/mm]

Ja, was ist damit?

> wir betrachten nun  [mm]\gamma[/mm] : I x I x [mm]J\to \IR[/mm]
>  [mm](a,b,s)^{T} \to \integral_{a}^{b}{f(t,s) dt}[/mm]
>  
> a)Zeigen Sie, dass [mm]\gamma[/mm] differenzierbar ist und bestimmen
> sie den grad [mm]\gamma.[/mm]
> Habe ich schon gemacht. Ich habe probleme mit b und c
>  b)Seien u,v:J [mm]\to[/mm] I differenzierbar. Bestimmen sie g'
> für
>  g: J [mm]\to \IR[/mm]  s [mm]\to \gamma(u(s),v(s),s).[/mm]
>  Warum ist g  differenzierbar?

Tipp: Kettenregel.

>  c) Berechnen Sie für gegebenes h [mm]\in C^{0}(\IR)[/mm] die
> Ableitungen bis zur Ordnung n [mm]\in \IN[/mm] von
>  [mm]g_{n}: \IR \to \IR[/mm]
>  s [mm]\to \integral_{0}^{s}{\bruch{(s-t)^{n}*h(t)}{n!} dt}[/mm]

Beachte, dass der Integrand stetig ist. Damit bekommst du die erste Ableitung leicht mit dem HDI.

>  
> Also bei b und c blicke ich überhaupt nicht durch.
>  
> Gruß

LG

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 26.06.2012
Autor: Stift

Hallo, danke.
Also  [mm] \bruch{\partial f}{\partial x_{2}} [/mm] ist stetig. Habe ich vergessen zu schreibe.
b) Kettenregel: [mm] \gamma(u(s),v(s),s) [/mm] Also ich weiß jetzt nicht ob ich dass richtig mache, aber ich versuchs mal: Also [mm] \gamma [/mm] schickt (u(s),v(s),s) so, dass [mm] (u(s),v(s),s)^{T} \to \integral_{u(s)}^{v(s)}{f(t,s) dt} [/mm] Ist das so richtig? Ich glaube nicht, da ich nicht sehe wie ich die Kettenregel hier anwenden muss.  In dieser Form [mm] \gamma(u(s),v(s),s) [/mm] weiß ich leider auch nicht wie ich die Kettenregel anwenden soll, da ich nicht weiß wie die einzelnen Komponenten aussehen.

c) Meinst du mit HDI Hauptsatz der Differential und Integralrechnung?
Wenn ja, muss ich ja das integral von [mm] \integral_{0}^{s}{\bruch{(s-t)^{n}\cdot{}h(t)}{n!} dt} [/mm] bilden. Nur was mache ich mit h(t). Den rest kann ich integrieren, aber das h(t) stört mich.

Gruß

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Do 28.06.2012
Autor: kamaleonti


> Hallo, danke.
> Also  [mm]\bruch{\partial f}{\partial x_{2}}[/mm] ist stetig. Habe
> ich vergessen zu schreibe.
> b) Kettenregel: [mm]\gamma(u(s),v(s),s)[/mm] Also ich weiß jetzt
> nicht ob ich dass richtig mache, aber ich versuchs mal:
> Also [mm]\gamma[/mm] schickt (u(s),v(s),s) so, dass
> [mm](u(s),v(s),s)^{T} \to \integral_{u(s)}^{v(s)}{f(t,s) dt}[/mm]
> Ist das so richtig? Ich glaube nicht, da ich nicht sehe wie
> ich die Kettenregel hier anwenden muss.  In dieser Form
> [mm]\gamma(u(s),v(s),s)[/mm] weiß ich leider auch nicht wie ich die
> Kettenregel anwenden soll, da ich nicht weiß wie die
> einzelnen Komponenten aussehen.

Aber du weißt, das [mm] \gamma [/mm] differenzierbar ist.

Also gilt nach Kettenregel [mm] $D\gamma (u(s),v(s),s)\cdot\pmat{u'(s)\\v'(s)\\1}=\ldots$ [/mm]

>  
> c) Meinst du mit HDI Hauptsatz der Differential und  Integralrechnung?

Ja.

>  Wenn ja, muss ich ja das integral von
> [mm]\integral_{0}^{s}{\bruch{(s-t)^{n}\cdot{}h(t)}{n!} dt}[/mm] bilden.

Musst du nicht! Dadurch, dass der Integrand stetig ist, ist die Ableitung doch ganz einfach zu bestimmen.
Einfaches Beispiel mit f stetig:

      [mm] \frac{\partial}{\partial x}\left(\int_a^x f(t) dt \right)=f(x). [/mm]


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de