www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit der p-Norm
Differenzierbarkeit der p-Norm < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit der p-Norm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:08 Fr 01.06.2012
Autor: Gedro

Aufgabe
Zeige dass die Funktion
[mm] f_{p}:\IR^n\to \IR, x\mapsto \parallel x\parallel_{p} [/mm] = [mm] (\summe_{i=1}^{n} |x_{i}|^{p})^{\bruch{1}{p}} [/mm]
in allen [mm] x\in\IR^{n}\backslash [/mm] {0} differenzierbar ist für [mm] n\in\IN [/mm] und [mm] p\in (1,\infty). [/mm]



Hallo,

ich wollte die Differenzierbarkeit über die stetige partielle Differenzierbarkeit zeigen. Stoße dort aber auf ein kleines Problem.
Zu aller erst habe ich gezeigt, dass die Funktion [mm] g(x)=|x|^{p} [/mm] auf ganz [mm] \IR [/mm] stetig differenzierbar ist für [mm] p\in (1,\infty) [/mm] mit [mm] g'(x)=\begin{cases} p*\bruch{x}{|x|}*|x|^{p-1}, & x \not=0\\ 0, & x=0 \end{cases}. [/mm]
Somit konnte ich dann die partiellen Ableitungen bestimmen:

[mm] \bruch{\partial f}{x_{i}}(x)=\begin{cases} \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{(|x_{1}|^{p}+...+|x_{n}|^{p})^\bruch{p-1}{p}}, & x_{i}\not=0 \\ 0, & x_{i} = 0 \end{cases} [/mm]

Da [mm] x\in\IR^{n}\backslash [/mm] {0} muss ich mir um den Nenner keine Sorgen machen, dass er 0 wird.
Nun möchte ich zeigen, dass die partielle Ableitung stetig ist. Dies klappt auch für alle [mm] x\in\IR^{n}\backslash [/mm] {0} bis auf den Fall, dass wenn [mm] x\in [/mm] ist. Das heisst, dass alle Einträge im Vektor 0 sind, bis auf [mm] x_{i}. [/mm] Dann hätte ich nämlich stehen:


[mm] \bruch{\partial f}{x_{i}}(x) [/mm] =  [mm] \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{(0+...+|x_{i}|^{p}+...+0)^\bruch{p-1}{p}} [/mm] =  [mm] \bruch{p*\bruch{x_{i}}{|x_{i}|}*|x_{i}|^{p-1}}{|x_{i}|^{p-1}} [/mm] =  [mm] p*\bruch{x_{i}}{|x_{i}|} [/mm]

Für [mm] \limes_{x\rightarrow 0} [/mm] ex. der Grenzwert aber nicht und somit wäre die partielle Ableitung an dieser Stelle auch nicht stetig.
Hat das eventuell etwas damit zu tun, dass ich durch die Limesbetrachtung mich dem Nullvektor annähere, in der die Funktion f nicht partiell differenzierbar ist?

Mache ich irgendwo einen Fehler oder muss ich über einen anderen Ansatz an die Aufgabe dran?

Gruß,
Gedro

        
Bezug
Differenzierbarkeit der p-Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 04.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de