Differenzierbarkeit von Funkti < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:28 So 05.03.2006 | Autor: | KTO |
Ich muss bis zum 16.03.2006 meine Facharbeit zum Thema "Differenzierbarkeit von Funktionen mehrerer Veränderlicher" schreiben. Leider verstehe ich in entsprechenden Artikeln von Wikipedia nur Bahnhof, da mir viele Begriffe aus der Mengenlehre fehlen (ich glaube zumindest, dass es daran liegt). Könnte sich eventuell jemand meiner erbarmen und mir eine einfache Erklärung zur "Differenzierbarkeit von Funktionen mehrerer Veränderlicher" schreiben? Wie man ableitet, habe ich verstanden, es fehlt nur die Differenzierbarkeit an sich.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Burg k., Haf H., Wille F.: Höhere Mathematik für Ingeneure, Band 1: Analysis 5. Auflage
Schreibt:
f(x,y) ist genau dann in [mm] \underline{x}_{0}=[x_{0},y_{0}] [/mm] differeinzerbar, wenn es eine Tangentialebene in f in [mm] \underline{x}_{0} [/mm] gibt.
Was bedeutet Facharbeit eigentlich genau also Schule Uni Fh Semester Schuljahr?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Sa 11.03.2006 | Autor: | KTO |
Eine Definition an sich hilft mir nicht, ich benötige einen mathematischen Beweis mit Herleitung. Und das alles so einfach wie möglich, da Texte aus Netz und Büchern einfach zu kompliziert sind.
PS: Ich bin inder 12ten Klasse, da muss jeder in einem LK die Facharbeit Schreiben, max 15 Seiten zu eine bestimmten Thema
|
|
|
|
|
Schau dir nochmal den "Satz von Schwarz" bei Wikipedia an. Wenn du dazu Fragen hast kannst du sie ja nochmal stellen.
Glaube kaum das der Lehrer in der 12 klasse verlangt, das ihr den Satz beweisen könnt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:31 So 12.03.2006 | Autor: | KTO |
Leider kann mir der Satz von Schwarz da auch nicht so wirklich helfen, den hab ich auch schon in meine Facharbeit eingebracht. Ich denke mal, ich werde einfach alle Bedingungen zur Differenzierbarkeit hinklatschen die ich finden kann und hoffen, dass es dafür ne akzeptable Note gibt^^
Naja, dann viele Dank fürs helfen.
|
|
|
|