www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenzieren
Differenzieren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 02.05.2009
Autor: Liverpool87

Aufgabe
Differenzieren Sie

y = [mm] (\bruch{\wurzel{ln(sin(x))}}{\wurzel{ln(cos(x))}})^2 [/mm]

Hallo

Meine Frage, kann ich die Wurzeln einfach los werden weil ja um die Ganze Klammer Hoch2 steht?, das würde den aufwand extrem verringern

Mein Ansatz:

[mm] \bruch{ln(sin(x))}{ln(cos(x))} [/mm] = [mm] \bruch{1}{sin(x)} \* [/mm] cos(x)  [mm] \* [/mm] ln(cos(x) - ln(sin(x)  [mm] \* \bruch{1}{cos(x)} \* [/mm] - sin(x)

Stimmt das soweit?



        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Sa 02.05.2009
Autor: kuemmelsche

Hallo,

also an der Vereinfachung [mm] $\wurzel{a}^2 [/mm] = a$ ist grundsätzlich nichts falsch, andersherum musst du nur beachten, dass [mm] $\wurzel{a^2} [/mm] = |a|$ !

Deine Ableitung nach Quotientenregel sieht gut aus. Kannst ja noch die [mm] $\bruch{sin x}{cos x} [/mm] = tan x$ vereinfachen.

lg Kai

Bezug
        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 02.05.2009
Autor: Teufel

Hi!

Kann mich auch täuschen, aber ist die Funktion überhaupt differenzierbar? Sie ist nämlich, wie sie da steht, für kein x definiert, außer wohl im Komplexen.
sin(x) und cos(x) liefern Werte zwischen 0 und 1, der natürliche Logarithmus davon liefert nur Werte [mm] \le [/mm] 0. Und davon die Wurzel ist in [mm] \IR [/mm] nicht zu ziehen. Auch wenn im Zähler unter der Wurzel die 0 steht, hat man im Nenner wieder die Wurzel einer negativen Zahl, um auch den Fall abzudecken.


Und wenn man die Funktion umschreibt, hat man ja eine andere, siehe [mm] f(x)=\bruch{x}{x} [/mm] und g(x)=1. f ist für x=0 nicht definiert, g schon.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de