www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Differenzieren, Integrieren
Differenzieren, Integrieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren, Integrieren: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 23:58 Do 06.03.2008
Autor: Kreator

Aufgabe
-

Ich habe eine sehr allgemeine mathematische Frage: Warum ist das Differenzieren die Umkehrung des Integrieren. Ich weiss zwar bei beiden Operationen wie man sie herleitet (beim Differenzieren über den Differenzialquotienten und bei Integrieren über die Flächenberechnung unter einer Funktion über das Riemann-Integral (mit unendlich vielen "Säulen"). Warum ist aber die eine Operation genau die Umkehrung der anderen Operation? Kann mir das jemand kurz logisch erklähren? Oder gibts dazu eine gute Internetseite?

        
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Fr 07.03.2008
Autor: Bastiane

Hallo Kreator!

> -
>  Ich habe eine sehr allgemeine mathematische Frage: Warum
> ist das Differenzieren die Umkehrung des Integrieren. Ich
> weiss zwar bei beiden Operationen wie man sie herleitet
> (beim Differenzieren über den Differenzialquotienten und
> bei Integrieren über die Flächenberechnung unter einer
> Funktion über das Riemann-Integral (mit unendlich vielen
> "Säulen"). Warum ist aber die eine Operation genau die
> Umkehrung der anderen Operation? Kann mir das jemand kurz
> logisch erklähren? Oder gibts dazu eine gute Internetseite?

Hehe, lustige Frage. Irgendwie weiß ich nicht, was du für eine Antwort erwartest - könntest du mir denn sagen, warum die Addition die Umkehrung der Subtraktion ist? Oder die Wurzel die Umkehrung des Quadrierens? Wenn ja, dann kann ich dir vllt auch eine Antwort auf deine Frage geben, aber so wüsste ich gerade zu keiner dieser Fragen eine Antwort...

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:53 Fr 07.03.2008
Autor: leduart

Hallo Bastiane
Das Integral wird i.A. nicht als Umkehrung des Differenzierens definiert, sondern durch Riemannsummen, dann ist die Umkehrung schon ein Satz, der sogar fundamentalsatz ist, also mehr als die definition von Subtraktion als Umkehrung von Adition .
Gruss leduart

Bezug
        
Bezug
Differenzieren, Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Fr 07.03.2008
Autor: leduart

Hallo
Man kann aus der Darstellung des Integrals als GW von Summen herleiten, dass das Integral einer stetigen Funktion als Ableitung die Funktion hat.
(Es gibt aber auch nicht stetige Funktionen, die man integrieren kann, und da stimmt das nicht.
du kannst das unter "Fundamentalsatz" oder auch Hauptsatz der Analysis  in jedem Mathebuch der Analysis nachlesen.
z.Bsp auch in []wiki, hier
Gruss leduart

Bezug
                
Bezug
Differenzieren, Integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Fr 07.03.2008
Autor: Kreator

Ok, vielen Dank, schau mir jetzt mal die Wiki-Seite zum Fudamentalsatz der Analysis an.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de