www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Differenzoperator
Differenzoperator < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzoperator: kurze Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:37 Di 25.12.2012
Autor: sissile

Aufgabe
[mm] \Delta [/mm] p(x) := p(x+1) - p(x)
Was ist dann [mm] \Delta^k [/mm] p(x) ??


Hallo
Ich dachte zuerst an (p(x+1) - [mm] p(x))^k [/mm] aber laut rechnung stimmt das nicht.

Würd mich auf eine Antwort freuen.
LG

        
Bezug
Differenzoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Di 25.12.2012
Autor: Fulla

Hallo sissile,

> [mm]\Delta[/mm] p(x) := p(x+1) - p(x)
>  Was ist dann [mm]\Delta^k[/mm] p(x) ??
>  Hallo
>  Ich dachte zuerst an (p(x+1) - [mm]p(x))^k[/mm] aber laut rechnung
> stimmt das nicht.

ich kann mir vorstellen, dass diese Schreibweise die Differenz $p(x+k)-p(x)$ bezeichnet. Aber zeig uns doch mal die Rechnung, von der du schreibst...


Lieben Gruß,
Fulla


Bezug
        
Bezug
Differenzoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Di 25.12.2012
Autor: Walde

hi sissile,

sowas ähnliches gab es in diesem Thread schonmal für Folgen. Evtl. wäre das zu übertragen, du hättest dann x anstelle von n. Die Definition von fred steht in der Mitte des Threads. Hier ist der direkte Link dazu. Ich weiss  aber nicht, ob man das anlaog übertragen kann, also ohne Gewähr.

Lg walde

Bezug
                
Bezug
Differenzoperator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Di 25.12.2012
Autor: Walde

Hi nochmal,

Für [mm] \Delta [/mm] p(x):=p(x+1)-p(x)

ist [mm] \Delta^2 p(x)=\Delta(\Delta [/mm] p(x)) doch einfach die Hintereinanderausführung. ZB für [mm] $\Delta [/mm] p(x)=p(x+1)-p(x)=:f(x)$

Also $ [mm] \Delta(p(x+1)-p(x))=\Delta [/mm] f(x)=f(x+1)-f(x)=p(x+2)-p(x+1)-(p(x+1)-p(x))=p(x+2)-2p(x+1)+p(x)$

und ich denke Freds Formel aus dem Thread lässt sich dann übertragen.

Lg walde

Bezug
                        
Bezug
Differenzoperator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 25.12.2012
Autor: sissile

Ja also wenn ich das richtig versteh gilt:
[mm] \Delta^{k+1} [/mm] p(x) = [mm] \Delta [/mm] ( [mm] \Delta^k [/mm] p(x)) = [mm] \Delta^k [/mm] p(x+1)- [mm] \Delta^k [/mm] p (x)
?
(Denn damit lässt sich mein Problem prima berechnen)
LG

Bezug
                                
Bezug
Differenzoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 25.12.2012
Autor: fred97


> Ja also wenn ich das richtig versteh gilt:
>  [mm]\Delta^{k+1}[/mm] p(x) = [mm]\Delta[/mm] ( [mm]\Delta^k[/mm] p(x)) = [mm]\Delta^k[/mm]
> p(x+1)- [mm]\Delta^k[/mm] p (x)

Ja

FRED

>  ?
>  (Denn damit lässt sich mein Problem prima berechnen)
>  LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de