www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Dimension
Dimension < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Kreuzprodukt Untervektorräume
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 18.02.2009
Autor: dr_geissler

Aufgabe
Sei V ein K-Vektorraum und U,W Unterräume von V endlicher Dimension. Zeige:

dim( U [mm] \times [/mm] W) = dim (U) + dim (W)

Hallo.

Ich verstehe folgendes bei der Aufgabe nicht.

Sagen wir mal dim(U) wäre 3 und dim(W) wäre 4. Dann wäre dim (U [mm] \times [/mm] W) = 7.

Die Basis von U ist jetzt aber {u1, u2, u3} und die Basis W={w1,...,w4}

Dann hätte U [mm] \times [/mm] W 12 Paare. also {u1,...,u3} [mm] \times [/mm] {w1,...,w4}

Warum ist dann dim(U [mm] \times [/mm] W) die Summe der Dimensionen U und W und nicht das Produkt.

Kann mir jemand mal meinen Denkfehler aufzeigen ???

DANKE


        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 18.02.2009
Autor: fred97


> Sei V ein K-Vektorraum und U,W Unterräume von V endlicher
> Dimension. Zeige:
>  
> dim( U [mm]\times[/mm] W) = dim (U) + dim (W)
>  Hallo.
>  
> Ich verstehe folgendes bei der Aufgabe nicht.
>  
> Sagen wir mal dim(U) wäre 3 und dim(W) wäre 4. Dann wäre
> dim (U [mm]\times[/mm] W) = 7.
>  
> Die Basis von U ist jetzt aber {u1, u2, u3} und die Basis
> W={w1,...,w4}
>  
> Dann hätte U [mm]\times[/mm] W 12 Paare. also {u1,...,u3} [mm]\times[/mm]
> {w1,...,w4}
>  


{ [mm] u_1,...,u_3 [/mm] }[mm]\times[/mm] {  [mm] w_1,...,w_4 [/mm]  } liefert Dir i.a. keine Basis !!

Betrachte mal { [mm] (u_1,0), (u_2,0), (u_3,0), (0,w_1), (0,w_2), (0,w_3), (0,w_4) [/mm]  }

Ist das vielleicht eine Basis von UxW ?  Kannst Du das verallgemeinern ?

FRED

> Warum ist dann dim(U [mm]\times[/mm] W) die Summe der Dimensionen U
> und W und nicht das Produkt.
>  
> Kann mir jemand mal meinen Denkfehler aufzeigen ???
>  
> DANKE
>  


Bezug
                
Bezug
Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 18.02.2009
Autor: dr_geissler

Das hab ich mir schon gedacht.

U [mm] \times [/mm] W bildet ja einen neuen Vektorraum. Das heißt, dass der hat |U|*|W| Elemente.
In meinem oberen Beispiel also 12.
[mm] \{(u1,w1)(u1,w2),...,(u3,w4)} [/mm]

Woher weiß ich denn nun, dass genau sieben davon meine Basis sind ??

Ich bekomm den Beweis nicht hin, wenn ich das nicht verstehe. Ich glaube mir fehlt irgendwo dazwischen eine entscheidende Information.

Bezug
                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 18.02.2009
Autor: fred97


> Das hab ich mir schon gedacht.
>  
> U [mm]\times[/mm] W bildet ja einen neuen Vektorraum. Das heißt,
> dass der hat |U|*|W| Elemente.

???????

>  In meinem oberen Beispiel also 12.

Nein,

> {(u1,w1)(u1,w2),...,(u3,w4)}


Diese Menge hat 12 Elemente !!

>  
> Woher weiß ich denn nun, dass genau sieben davon meine
> Basis sind ??
>  
> Ich bekomm den Beweis nicht hin, wenn ich das nicht
> verstehe. Ich glaube mir fehlt irgendwo dazwischen eine
> entscheidende Information.



{ [mm] (u_1,0), (u_2,0), (u_3,0), (0,w_1), (0,w_2), (0,w_3), (0,w_4) [/mm]   } ist eine Basis von UxW !!

Dazu mußt Du zeigen:

1. [mm] (u_1,0), (u_2,0), (u_3,0), (0,w_1), (0,w_2), (0,w_3), (0,w_4) [/mm] sind l.u.

2.jedes (u,w) in UxW ist  eine Linearkombination von [mm] (u_1,0), (u_2,0), (u_3,0), (0,w_1), (0,w_2), (0,w_3), (0,w_4) [/mm]


Probiers mal.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de