www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Dimension - was zählt?
Dimension - was zählt? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension - was zählt?: Liege ich richtig?
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 24.06.2013
Autor: Diophant

Hallo zusammen,

in aller Kürze folgende Frage:

In einer Uni-Übungsaufgabe zu einer HM1-Veranstaltung ist eine 4x4-Matrix A gegeben, deren Einträge teilweise noch von einer Formvariablen t abhängen. Weiter ist ein ebenfalls von t abhängiger 4-dimensionaler Vektor b gegeben.

Nachdem geklärt ist, für welche t die Matrix vollen Rang hat, wird unter anderem gefragt, welche Dimension der Lösungsraum des LGS

Ax=b

für eben diese t hat.

Nun ist es ja so: wenn das Zahlen wären hätte man eine eindeutige Lösung, die Dimension des Lösungsraums wäre Null. In diesem Fall hängt ja aber die Lösung noch von der Formvariablen t ab.

Was wäre da die richtige bzw. gängige Antwort für den Fall einer eindeutigen Lösung:

Dim(L)=0 (meine Vermutung

oder

Dim(L)=1

Vielen Dank für jede Antwort im Voraus.


Gruß, Diophant

        
Bezug
Dimension - was zählt?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 24.06.2013
Autor: Sax

Hi,

ich sehe das genauso.

Für jeden in Frage kommenden (rg [mm] A_t [/mm] = 4) Wert von t gibt es einen 0-dimensionalen Lösungsraum [mm] L_t, [/mm] der nur den einen Punkt [mm] P_t [/mm] enthält.

Die Punktmenge L = [mm] \{P_t\} [/mm] aller dieser Lösungen bildet vermutlich nicht einmal einen linearen Raum.

Gruß Sax.

Bezug
                
Bezug
Dimension - was zählt?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Mo 24.06.2013
Autor: Diophant

Hallo Sax,

> Hi,

>

> ich sehe das genauso.

>

> Für jeden in Frage kommenden (rg [mm]A_t[/mm] = 4) Wert von t gibt
> es einen 0-dimensionalen Lösungsraum [mm]L_t,[/mm] der nur den
> einen Punkt [mm]P_t[/mm] enthält.

>

> Die Punktmenge L = [mm]\{P_t\}[/mm] aller dieser Lösungen bildet
> vermutlich nicht einmal einen linearen Raum.

Danke für deine Rückmeldung. Ich bin einfach in diesen Uni-Dingen nicht so sattelfest, und um Rat gefragt werd ich halt trotzdem öfter. Somit kann ich diesen Rat jetzt mit einem noch besseren Gewissen weitergeben. :-)

Beste Grüße&schönen Tag, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de