www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Dimension eines Unterraumes
Dimension eines Unterraumes < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension eines Unterraumes: Kontrolle
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 21.08.2009
Autor: ronin1987

Aufgabe
Ermitteln Sie die Dimension des Unterraumes im [mm] R^{4}, [/mm] der durch folgende Vektoren erzeugt wird

(2 1 11 [mm] 2)^{T}; [/mm] (11 4 56 [mm] 5)^{T}; [/mm] (1 0 4 [mm] -1)^{T}; [/mm] (2 -1 5 [mm] -6)^{T} [/mm]

Hallo ;)

Also ich habe mich gerade an dieser Aufgabe aus einer Lineare Algebra Klausur einer Fachhochschule versucht. Ich bin auf ein Ergebnis gestoßen bin mir aber nicht sicher, ob das so schon reicht...

Hier meine Vorgehensweise:

1. [mm] \pmat{ 2 & 11 & 1 & 2\\ 1 & 4 & 0 & -1 \\ 11 & 56 & 4 & 5 \\ 2 & 5 & -1 & -6} [/mm]

Nun subtrahiere ich von der 4ten Zeile die erste  
2. [mm] \pmat{ 2 & 11 & 1 & 2\\ 1 & 4 & 0 & -1 \\ 11 & 56 & 4 & 5 \\ 0 & -6 & -2 & -8} [/mm]

Ich multipliziere die dritte Zeile mit "11"  
3. [mm] \pmat{ 2 & 11 & 1 & 2\\ 11 & 44 & 0 & -11 \\ 11 & 56 & 4 & 5 \\ 0 & -6 & -2 & -8} [/mm]

Ich subtrahiere von der dritten Zeile die zweite Zeile  
4. [mm] \pmat{ 2 & 11 & 1 & 2\\ 11 & 44 & 0 & -11 \\ 0 & 12 & 4 & 16 \\ 0 & -6 & -2 & -8} [/mm]

Hier ist ja nun zu erkennen, dass die Zeilen 3 + 4 voneinander abhängen, da ich die vierte ja nun nur noch mit 2 multiplizieren bräuchte.

Kann ich also aussagen, dass die Dimension dieses Unterraumes 2 beträgt oder muss ich die verbleibenden auch noch weiter untersuchen und wenn ja, wie lange..

Vielen Dank im Voraus für eure Mühe,

mfg,
Sebastian


        
Bezug
Dimension eines Unterraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Fr 21.08.2009
Autor: Arcesius

Hallo

> Ermitteln Sie die Dimension des Unterraumes im [mm]R^{4},[/mm] der
> durch folgende Vektoren erzeugt wird
>  
> (2 1 11 [mm]2)^{T};[/mm] (11 4 56 [mm]5)^{T};[/mm] (1 0 4 [mm]-1)^{T};[/mm] (2 -1 5
> [mm]-6)^{T}[/mm]
>  
> Hallo ;)
>  
> Also ich habe mich gerade an dieser Aufgabe aus einer
> Lineare Algebra Klausur einer Fachhochschule versucht. Ich
> bin auf ein Ergebnis gestoßen bin mir aber nicht sicher,
> ob das so schon reicht...
>  
> Hier meine Vorgehensweise:
>  
> 1. [mm]\pmat{ 2 & 11 & 1 & 2\\ 1 & 4 & 0 & -1 \\ 11 & 56 & 4 & 5 \\ 2 & 5 & -1 & -6}[/mm]
>  
> Nun subtrahiere ich von der 4ten Zeile die erste
>  2. [mm]\pmat{ 2 & 11 & 1 & 2\\ 1 & 4 & 0 & -1 \\ 11 & 56 & 4 & 5 \\ 0 & -6 & -2 & -8}[/mm]
>
> Ich multipliziere die dritte Zeile mit "11"
>  3. [mm]\pmat{ 2 & 11 & 1 & 2\\ 11 & 44 & 0 & -11 \\ 11 & 56 & 4 & 5 \\ 0 & -6 & -2 & -8}[/mm]
>  
> Ich subtrahiere von der dritten Zeile die zweite Zeile
>  4. [mm]\pmat{ 2 & 11 & 1 & 2\\ 11 & 44 & 0 & -11 \\ 0 & 12 & 4 & 16 \\ 0 & -6 & -2 & -8}[/mm]
>  

Das scheint bis hierher alles zu stimmen.

> Hier ist ja nun zu erkennen, dass die Zeilen 3 + 4
> voneinander abhängen, da ich die vierte ja nun nur noch
> mit 2 multiplizieren bräuchte.

[ok]

>
> Kann ich also aussagen, dass die Dimension dieses
> Unterraumes 2 beträgt oder muss ich die verbleibenden auch
> noch weiter untersuchen und wenn ja, wie lange..
>  

Nun, wenn du jetzt dies machst und die letzte Zeile eliminierst, dann bleiben trotzdem noch 3 Zeilen stehen. Also kannst du bis jetzt nur sagen, dass die Dimension höchstens 3 ist.

Du musst nun weiter machen und die Matrix auf Zeilenstufenform bringen! Hast du diese Form erreicht, so kannst du ablesen, wieviele Vektoren übrig bleiben...

> Vielen Dank im Voraus für eure Mühe,
>  
> mfg,
>  Sebastian
>  


Grüsse, Amaro






Bezug
                
Bezug
Dimension eines Unterraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Fr 21.08.2009
Autor: ronin1987

Danke für die Info, vielen Dank, du hast natürlich recht, dass ich bisher nur aussagen konnte, das 3 Dimensionen existieren, hab es aber noch weitergerechnet und komme aus 2, meine letzte Matrix sieht wie folgt aus:

[mm] \pmat{ 22 & 121 & 11 & 22\\ 0 & -132 & -44 & -176 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

da ich die Matrix ja nun nicht weiter elementar zerlegen, also kann ich jetzt Aussagen (weis gar nicht, wie ich den Antwortsatz gestalte ;O )

"Die Dimension des Unterraumes [mm] R^{4} [/mm] beträgt 2"

mfg,
Sebastian

Bezug
                        
Bezug
Dimension eines Unterraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Fr 21.08.2009
Autor: Arcesius

Hallo

> Danke für die Info, vielen Dank, du hast natürlich recht,
> dass ich bisher nur aussagen konnte, das 3 Dimensionen
> existieren, hab es aber noch weitergerechnet und komme aus
> 2, meine letzte Matrix sieht wie folgt aus:
>  
> [mm]\pmat{ 22 & 121 & 11 & 22\\ 0 & -132 & -44 & -176 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}[/mm]
>
> da ich die Matrix ja nun nicht weiter elementar zerlegen,
> also kann ich jetzt Aussagen (weis gar nicht, wie ich den
> Antwortsatz gestalte ;O )
>
> "Die Dimension des Unterraumes [mm]R^{4}[/mm] beträgt 2"
>  

Das ist so nicht ganz richtig.. es handelt sich um ein Unterraum IN [mm] \IR^{4}, [/mm] nicht um [mm] \IR^{4} [/mm] als Unterraum!

Ich würde den gegebenen Unterraum mit U bezeichnen. Dann: U [mm] \subset \IR^{4}.mit [/mm] dim(U) = 2.

> mfg,
>  Sebastian

Grüsse, Amaro

Bezug
                                
Bezug
Dimension eines Unterraumes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Fr 21.08.2009
Autor: ronin1987

Vielen Dank, das werde ich in der Klausur machen,

Merci beaucoup,

Sebastian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de