Dimension von Abbildungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:03 Do 17.11.2011 | Autor: | Michi46535 |
Aufgabe | Sei K ein Körper, X eine nicht leere Menge und V = Abb(X,K) der K-Vektorraum der K-wertigen Funktionen auf X. Wir nehmen an, dass X aus n [mm] \in \IN [/mm] Elementen besteht. Zeigen Sie, dass [mm] dim_{K}V [/mm] = n.
(Hinweis: Sie können zuerst folgendes zeigen: Für x [mm] \in [/mm] X bezeichne [mm] f_{x}= [/mm] X [mm] \to [/mm] K diejenige Funktion, die durch [mm] f_{x}(x) [/mm] = 1 und [mm] f_{x}(y)= [/mm] 0 für y [mm] \not= [/mm] x gegeben ist. Dann ist für paarweise verschiedene Elementw [mm] x_{1}, [/mm] ..., [mm] x_{n} \in [/mm] X das System [mm] {f_{x1}, ..., f_{xn}} [/mm] eine Basis von V. |
Hallo,
diese Aufgabe wurde uns so gestellt und es ist nichts verändert. So wie sie da steht, erscheint sie mir nicht lösbar bzw. die einzige Lösung, die mir bekannt ist, wäre die triviale Lösung von [mm] x_{0}.
[/mm]
Die Frage wurde schon einmal von einer Kommilitonin in einem anderen Forum gestellt (http://www.matheboard.de/thread.php?postid=1507204) und der Antwort kann ich eigentlich nichts mehr hinzufügen. Meine Frage ist nun: Gibt es noch einen anderen Weg das Problem zu lösen?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:03 Fr 18.11.2011 | Autor: | donquijote |
> Sei K ein Körper, X eine nicht leere Menge und V =
> Abb(X,K) der K-Vektorraum der K-wertigen Funktionen auf X.
> Wir nehmen an, dass X aus n [mm]\in \IN[/mm] Elementen besteht.
> Zeigen Sie, dass [mm]dim_{K}V[/mm] = n.
> (Hinweis: Sie können zuerst folgendes zeigen: Für x [mm]\in[/mm]
> X bezeichne [mm]f_{x}=[/mm] X [mm]\to[/mm] K diejenige Funktion, die durch
> [mm]f_{x}(x)[/mm] = 1 und [mm]f_{x}(y)=[/mm] 0 für y [mm]\not=[/mm] x gegeben ist.
> Dann ist für paarweise verschiedene Elementw [mm]x_{1},[/mm] ...,
> [mm]x_{n} \in[/mm] X das System [mm]{f_{x1}, ..., f_{xn}}[/mm] eine Basis von
> V.
> Hallo,
> diese Aufgabe wurde uns so gestellt und es ist nichts
> verändert. So wie sie da steht, erscheint sie mir nicht
> lösbar bzw. die einzige Lösung, die mir bekannt ist,
> wäre die triviale Lösung von [mm]x_{0}.[/mm]
> Die Frage wurde schon einmal von einer Kommilitonin in
> einem anderen Forum gestellt
> (http://www.matheboard.de/thread.php?postid=1507204) und
> der Antwort kann ich eigentlich nichts mehr hinzufügen.
> Meine Frage ist nun: Gibt es noch einen anderen Weg das
> Problem zu lösen?
Ich weiß nicht, was du unter der "trivialen Lösung von [mm]x_{0}.[/mm]" und "einem anderen Weg" verstehst, aber mit dem Hinweis ist die Aufgabe lösbar.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:42 Fr 18.11.2011 | Autor: | Michi46535 |
Hmm, dann muss ich da nochmal drüber nachdenken. Ich habe anscheinend einen falschen Weg versucht und komme deshalb zu keiner Lösung.
|
|
|
|