www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dimensionssatz
Dimensionssatz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimensionssatz: Frage
Status: (Frage) beantwortet Status 
Datum: 18:32 Sa 04.12.2004
Autor: bauta

So Analysis hab ich lamgsam ganz gut drauf aber bei Lineare Algebra komm ich immer wieder einfach net weiter, deswegen hab ich mal wieder bei eine Aufgabe überhaupt keine Ahnung was ich da tun muss.  Erst mal die Aufgabenstellung:

Seien A,B,C endlich-dimensionale Unterräume eines K-Vektorraums E.
Jetzt sollen wir folgenden Ungleichungen Beweisen:
(1) dim(A+B+C) [mm] \le [/mm] dim A + dim B + dim C
(2) dim(A+B+C) [mm] \le [/mm] dim A + dim B + dim C - 2 dim(A [mm] \cap [/mm] B [mm] \cap [/mm] C) (Verschärfung der Ersten)

Außerdem sollen wir ein hinreichendes und notwendiges Kriterium dafür angeben, dass die Unlgeichung (1) ein Gleichung wird.
Ich denke das ein hinreichendes Kriterium wie sein wird das sich A,B,C überhuapt nicht miteinander schneiden, weiß aber net ob das stimmt, den Dimensionsatz für 2 dieser Mengen haben wir zwar schon kurz in der Vorlesung gehabt, allerdings auch noch nicht ganz verstanden. Es wäre echt cool wenn mir irgendwer eine Anstoß oder ein Lösung zu meinem Problem geben könnt.
Ich habe diese Frage in keine anderen Forum auf anderen Seiten gestellt.

        
Bezug
Dimensionssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Sa 04.12.2004
Autor: Palin

Ich hab hier den Beweis für zwei Unterräume die Erweiterung auf 3 überlasse ich mal dir.  

Es sein U und V zwei endliche-dimensionale Unterräume eines Vektorraums X.Dann gilt

Dim U + Dim V = Dim(U [mm] \cap [/mm] V) + Dim(U+V)

Beweis: Es sei [mm] $B_{d}=\{ \beta_{1},.. \beta_{r} \}$eine [/mm] Basis von U [mm] \cap [/mm] V.
Nun kan [mm] B_{d} [/mm] einerseits zu einer Basis [mm] B_{1}={ \beta_{1},..., \beta_{r}, a_{1}...,a_{s}} [/mm] von U, andererseits auch zu einer [mm] B_{2}={ \beta_{1},..., \beta_{r}, b_{1}...,b_{t}} [/mm] von V erweitert werden.
Zunächst soll jetzt gezeigtwerden, das [mm] $B=\{ \beta_{1},..., \beta_{r},a_{1}...,a_{s}, b_{1}...,b_{t}\}$ [/mm] eine Basis des Summenraumes U+V ist.
Jeder Vektor r  [mm] \in [/mm] U+V kann in der Form r = u + v mit u [mm] \in [/mm] U und v [mm] \in [/mm] V dargestellt werden.
Da sich u als Linearkombination von [mm] B_{1} [/mm] und v als Lin.komb. von [mm] B_{2} [/mm]
darstellen läßt, ist r eine Linearkombination von B. Es gilt [B] = U+V.
Zum Nachweis der linearen Unabhänigkeit von B werden

[mm] x_{1} \beta_{1}+ x_{r} \beta_{r}+y_{1} a_{1}+ y_{s} a_{s} +z_{1} b_{1}+ z_{t} b_{t} [/mm] = 0,
also
[mm] x_{1} \beta_{1}+ x_{r} \beta_{r}+y_{1} a_{1}+ y_{s} a_{s} =-z_{1} b_{1}- z_{t} b_{t} [/mm]
vorausgesetzt.
Da in der letzten Gleichung die linke Seite ein Vektor aus U, die rechte Seite aber ein Vektor aus V ist, müssen beide Seiten einen Vektor aus U [mm] \cap [/mm] V sein, der sich somit als Linearkombination von [mm] \beta_{1},.. \beta_{r} [/mm] darstellen lassen muß. Wegen derlinearen Unabhänigkeitvon _{1} und [mm] B_{2} [/mm] ergibt sich hierraus unmittelbar [mm] x_{1}=..=x-{r}=y_{1} [/mm] =... [mm] y_{s} =z_{1} =...=z_{t} [/mm] =0
Es folgt jetzt
Dim U + Dim V = (r+s)+(r+t)=r+(r+s+t)=Dim(U [mm] \cap [/mm] V) + Dim (U+V).

Bezug
                
Bezug
Dimensionssatz: Wie komm ich auf 3
Status: (Frage) beantwortet Status 
Datum: 13:36 So 05.12.2004
Autor: bauta

Und gibts auch ne möglichkeit diesen beweis direkt auf 3 Unterräume anzuwenden und wenn ja wie?

Bezug
                        
Bezug
Dimensionssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Di 07.12.2004
Autor: Julius

Hallo bauta!

> Und gibts auch ne möglichkeit diesen beweis direkt auf 3
> Unterräume anzuwenden und wenn ja wie?

Ja, es gilt:

[mm] $\dim(A+B+C) [/mm] = [mm] \dim(A) [/mm] + [mm] \dim(B) [/mm] + [mm] \dim(C) [/mm] - [mm] \dim(A\cap [/mm] B) - [mm] \dim(A \cap [/mm] C) - [mm] \dim(B \cap [/mm] C) + [mm] \dim(A \cap [/mm] B [mm] \cap [/mm] C)$.

Eien Lösung zu deiner Aufgabe findest du übrigens hier.

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de