www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Dimenssionssatz
Dimenssionssatz < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimenssionssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Mi 18.09.2013
Autor: Grapadura

Aufgabe
<br>
Bestimmen sie mit Hilfe des Dimenssionssatzes dim Ker[mm] \phi[/mm] mit
a) [mm] \phi[/mm]= [mm] K^5 \to K^7[/mm] mit dim Bi[mm]\phi[/mm]=3
b) [mm] \phi[/mm]= [mm] K^6 \to K^3[/mm], mit [mm]\phi[/mm] ist surjektiv
c) [mm] \phi[/mm]= M(2x2,K)[mm]\to[/mm]M(2x2,K), mit dim dim Bi[mm]\phi[/mm] = 3


<br>

So der Dimensionssatz lautet ja jetzt: Dim V = Dim Ker [mm]\phi[/mm] + Dim Bi[mm]\phi[/mm]

Irgendwie stehe ich da gerade total auf dem Schlauch. Ok es ist schon spät, aber ich werde auch aus meinen Aufzeichnungen nicht mehr schlau. Wie bestimme ich jetzt den Kern bei der a? Oder die Dimension des Bildes bei aufgabenteil b?

Muss ich bei der a) jetzt 7-5 rechnen um erhalte dann 2 als Dimension meines Kerns? Oder mache ich da gerade Unfug?
 

        
Bezug
Dimenssionssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 18.09.2013
Autor: helicopter

Hallo,

> <br>
>  Bestimmen sie mit Hilfe des Dimenssionssatzes dim Ker[mm] \phi[/mm]
> mit
>  a) [mm]\phi[/mm]= [mm]K^5 \to K^7[/mm] mit dim Bi[mm]\phi[/mm]=3
>  b) [mm]\phi[/mm]= [mm]K^6 \to K^3[/mm], mit [mm]\phi[/mm] ist surjektiv
>  c) [mm]\phi[/mm]= M(2x2,K)[mm]\to[/mm]M(2x2,K), mit dim dim Bi[mm]\phi[/mm] = 3
>  
> <br>
>  
> So der Dimensionssatz lautet ja jetzt: Dim V = Dim Ker [mm]\phi[/mm]
> + Dim Bi[mm]\phi[/mm]
>  

Ja wobei [mm] $\phi{}:V\rightarrow{}W$ [/mm] eine lineare Abbildung von V nach W ist.

> Irgendwie stehe ich da gerade total auf dem Schlauch. Ok es
> ist schon spät, aber ich werde auch aus meinen
> Aufzeichnungen nicht mehr schlau. Wie bestimme ich jetzt
> den Kern bei der a? Oder die Dimension des Bildes bei
> aufgabenteil b?
>  

Hier ist dein V der [mm] K^5 [/mm] und W der [mm] K^7, [/mm] es ist also dim [mm] K^5=dim Bild(\phi)+dim Kern(\phi). [/mm]
Dimension des [mm] K^5 [/mm] kennst du und die des Bildes auch....

Bei der b) überlege was die Surjektivität für die Dimension des Bildes bedeutet.

> Muss ich bei der a) jetzt 7-5 rechnen um erhalte dann 2 als
> Dimension meines Kerns? Oder mache ich da gerade Unfug?
>   

Gruß helicopter

Bezug
                
Bezug
Dimenssionssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Do 19.09.2013
Autor: Grapadura

Alles klar Danke, dann ist bei a) die Dimension des Kerns genau 2.

bei der b) würde ich sagen aufgrund der surjektivität, dass das Bild Dimension 3 hat und somit der Kern ebenfalls, aufgrund der Definition einer surjektiven Abbildung.

bei der c) bin ich noch unschlüssig, ich weiß dass das Bild Dimension 3 hat, aber wie komme ich in dem Fall auf die Dimension von M?

Bezug
                        
Bezug
Dimenssionssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Do 19.09.2013
Autor: angela.h.b.

Hallo,

a) undb) sind richtig.

> bei der c) bin ich noch unschlüssig, ich weiß dass das
> Bild Dimension 3 hat, aber wie komme ich in dem Fall auf
> die Dimension von M?

Durch Wissen. Der Raum der [mm] n\times [/mm] n-Matrizen hat die Dimension [mm] n^2. [/mm]

LG Angela

Bezug
                                
Bezug
Dimenssionssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 19.09.2013
Autor: Grapadura

Achso, dann habe ich also [mm] 2^2 [/mm] = 4 und verfahre dann analog zu Aufgabenteil a) indem ich einfach 4-3 = 1 rechne und habe so meinen Kern?

Bezug
                                        
Bezug
Dimenssionssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Do 19.09.2013
Autor: tobit09

Hallo Grapadura,

> Achso, dann habe ich also [mm]2^2[/mm] = 4 und verfahre dann analog
> zu Aufgabenteil a) indem ich einfach 4-3 = 1 rechne und
> habe so meinen Kern?

[ok] Ja, so hast du die Dimension des Kerns (nicht den Kern selber).

Viele Grüße
Tobias

Bezug
        
Bezug
Dimenssionssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:56 Do 19.09.2013
Autor: fred97


> So der Dimensionssatz lautet ja jetzt: Dim V = Dim Ker [mm]\phi[/mm]
> + Dim Bi[mm]\phi[/mm]


[]  Bi[mm]\phi[/mm]  ?


FRED

Bezug
                
Bezug
Dimenssionssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:38 Do 19.09.2013
Autor: Grapadura

Was sonst? Etwas Tofu? :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de