www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Diophantische Gleichungen
Diophantische Gleichungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diophantische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 So 08.01.2012
Autor: kitty89

Aufgabe
Aufgabe 1 (Diophantische Gleichungen)
Ermitteln Sie jeweils die ganzzahligen Lösungen der folgenden Diophantischen Gleichungen.
a) 9x²- 4y² = 45
b)  x²- 49y²=154
c)-3x + xy -4y = 44
d)  xy + 6x + 7y = 52

Hallo,

ich habe bereits sehr viel Zeit investiert um diese Aufgaben zu lösen. Leider ist mir eine Lösung nur bei der ersten Aufgabe gelungen, mit x1=45 und x2= -90.Könntet ihr mir bitte sagen, ob das korrekt ist? Die Lösung von Aufg. b) ist vermutlich  falsch, mit x1= 154 und x2= -7546. Oder ? Bei den anderen Aufgaben weiß ich nicht wie ich vorgehen soll.Ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 08.01.2012
Autor: Diophant

Hallo Sarah,

trotz meines Nicknames: ein Experte bin ich nicht auf diesem Gebiet. Aber meinen Nickname habe ich mal ausgewählt, weil dieser ominöse Diophant, von dem man recht wenig weiß, relativ unkonventionell gewesen sein muss und viele Tricks auf Lager hatte. Zwar soll man heutzutage durchaus die Erkenntnisse der Zahlentheorie auf die Lösungen solcher Diophantischer Gleichungen anwenden, aber Tricks sind trotzdem nicht verboten.

So könntets du bei der a) mal versuchen, die linke Seite zu faktorisieren. Dann bist du schon so gut wie fertig...

Desgleichen bei Aufgabe b).  Auch bei c) und d) müsste es - nach geeigneter Ergänzung - einen Weg über faktorsieren geben, aber das könntest du ja zunächst selbst mal versuchen (ich bin bei b) und c) spontan auch noch nicht weitergekommen).

Gruß, Diophant

Bezug
        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 So 08.01.2012
Autor: hippias

Die erste Gleichung wuerde ich wohl einfach faktorisieren, wobei ich gleich [mm] $x,y\geq [/mm] 0$ voraussetze:
$45= (3x+2y)(3x-2y)$. Nun muss einer der Faktoren durch $3$ teilbar sein, und somit muss $y$ durch $3$ teilbar sein. Sei $y= 3y'$. Einsetzen und kuerzen liefert $5= (x+2y')(x-2y')$. Nun folgt, dass $x+2y'$ und $x-2y'$ gleiches Vorzeichen haben, sodass wegen [mm] $x,y'\geq [/mm] 0$ auch [mm] $x+2y'\geq [/mm] 0$ ist und damit auch [mm] $x-2y'\geq [/mm] 0$.
Da $5$ wohl prim ist, folgt 1. $x+2y'= 1$ und $x-2y'= 5$ oder 2. $x+2y'= 5$ und $x-2y'= 1$.

Der erste Fall scheidet aus, wegen [mm] $x\geq [/mm] 0$ und im zweiten berechnet man $y'= 1$, also $y= 3$ und $x= 3$. Loesungsmenge [mm] $\{(\pm 3, \pm1)\}$. [/mm]    

Die zweite Gleichung duerfte aehnlich zu loesen sein.

Bezug
        
Bezug
Diophantische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 08.01.2012
Autor: abakus


> Aufgabe 1 (Diophantische Gleichungen)
> Ermitteln Sie jeweils die ganzzahligen Lösungen der
> folgenden Diophantischen Gleichungen.
> a) 9x²- 4y² = 45
> b) x²- 49y²=154
> c)-3x + xy -4y = 44
> d) xy + 6x + 7y = 52
> Hallo,
>
> ich habe bereits sehr viel Zeit investiert um diese
> Aufgaben zu lösen. Leider ist mir eine Lösung nur bei der
> ersten Aufgabe gelungen, mit x1=45 und x2= -90.Könntet ihr
> mir bitte sagen, ob das korrekt ist?

Warum fragst du????
Setze dein x=45 ein und rechne damit y aus. Wenn dein y ganzzahlig ist, hast du eine Lösung gefunden. Wenn nicht- dann gehört x=45 nicht zu einem Lösungspaar.
Du solltest, wie schon vorgeschlagen- faktorisieren.
Aus [mm] $9x^2 -4y^2=45$ [/mm] folgt (3x-2y)(3x+2y)=45
Die Zahl 45 lässt sich genau auf folgende Arten als Produkt zweier ganzer Zahlen erzeugen:
45*1
15*3
9*5
5*9
3*15
1*45
(-45)*(-1)
...
(-1)*(-45)
Teste alle 12 Möglichkeiten, indem du die zugehörigen Gleichungssysteme löst.
Möglichkeit 1: 3x-2y=45 und 3x+2y=1 (führt auf y=-22 und x=1/3, also keine ganzzahlige Lösung).
Die restliche 11 Fälle überlasse ich dir.

Der Versuch, c) zu faktorisieren, führt zunächst auf den Zwischenschritt
-3x+xy=x(-3+y)
Dummerweise lässt sich diese Ausklammerei nicht weiter fortsetzen, weil dahinter nur noch -4y steht. Würde dort auch noch eine 12 stehen, könnte man aus 12-4y ebenfalls den Faktor (-3+y) ausklammern und würde -4(-3+y) erhalten.
Wenn wir also eine 12 brauchen - dann holen wir sie uns doch einfach!
Aus -3x + xy -4y = 44 erhalten wir durch beidseitige Addition von 12
-3x+xy +12-4y=56 , und im linken Term können wir zweimal (-3+x) ausklammern:
x(-3+y) -4(-3+y)=56
Wir klammern den gemeinsamen Faktor (-3+y) aus:
(-3+y)(x-4)=56.
Nun ist 56 z.B.
56*1
28*2
14*4
8*7
(außerdem umgekehrte Reihenfolge beider Faktoren; außerdem entsprechende negative Faktoren).
Das gibt 16 mögliche Lösungspaare (x;y).
Gruß Abakus


> Die Lösung von Aufg.
> b) ist vermutlich  falsch, mit x1= 154 und x2= -7546. Oder
> ? Bei den anderen Aufgaben weiß ich nicht wie ich vorgehen
> soll.Ich wäre euch sehr dankbar, wenn ihr mir helfen
> könntet.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de