Dirac-Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:26 Mo 26.10.2009 | Autor: | kevin-m. |
Aufgabe | [mm] \delta_s [/mm] bezeichne das Dirac-Maß an einer Stelle $s [mm] \in [/mm] S$ für den Ring [mm] $\mathfrak{B}\subset \mathfrak{P}(S)$. [/mm] Zeigen Sie, dass [mm] $\sum_{k\in \mathbb N} a_k \delta_{s_k}$ [/mm] ein additives Maß auf [mm] \mathfrak{B} [/mm] ist, wenn [mm] $a_k [/mm] >0$ mit $k [mm] \in \mathbb [/mm] N$ und [mm] $s_k \in [/mm] S$ gilt. Des Weiteren ist für [mm] $S=\mathbb [/mm] R$ der Wert von [mm] $\sum_{k \in \mathbb N}\frac{1}{2^k} \delta_{\frac{1}{k}}((0,1))$ [/mm] zu bestimmen. |
Hallo,
zur ersten Teilaufgabe:
[mm] $\sum_{k\in \mathbb N} a_k \delta_{s_k}=a_1 \cdot \delta_{s_1} [/mm] + [mm] a_2 \cdot \delta_{s_2} [/mm] + [mm] a_3\cdot \delta_{s_3}+...$ [/mm] soll ein additives Maß sein. Ich muss also laut Def. folgendes zeigen:
[mm] $\mu: \mathfrak{B}\to \mathbb [/mm] R$ ist additives Maß, falls gilt:
[mm] $E_1, E_2 \in \mathfrak{B} \text{ und } E_1 \cap E_2=\emptyset \Rightarrow \mu(E_1 \cup E_2)=\mu(E_1)+\mu(E_2)$.
[/mm]
Nun hätte ich mir gedacht, da die [mm] \delta_{s_k} [/mm] ohnehin schon Maße sind (das darf ich voraussetzen), gilt für alle Indizes [mm] $s_k \in [/mm] S$:
$A, B [mm] \in \mathfrak{B} \text{ und } [/mm] A [mm] \cap B=\emptyset \Rightarrow \delta_{s_k}(A \cup B)=\delta_{s_k}(A)+\delta_{s_k}(B)$, [/mm] also auch:
$$
[mm] a_i \cdot \left ( \delta_{s_i}(A \cup B) \right )=a_i \cdot \left ( \delta_{s_i}(A)+\delta_{s_i}(B) \right [/mm] ) = [mm] a_i \cdot \delta_{s_i}(A)+a_i \cdot \delta_{s_i}(B) [/mm]
$$
Ich bin mir aber nicht sicher, ob damit die Aussage schon bewiesen ist.
Und zur zweiten Teilaufgabe habe ich mir überlegt:
Nur für $k=1$ ist [mm] $\delta_{1/k}=\delta_1 [/mm] (0,1)=0$. Für alle anderen [mm] $k\in \mathbb [/mm] N$ gilt [mm] $\delta_{1/k}=1$. [/mm] Also reicht es, die Summe
[mm] $\sum_{k=2}^{\infty}\frac{1}{2^k}$
[/mm]
zu betrachten.
[mm] $\sum_{k=2}^{\infty}\frac{1}{2^k}=\sum_{k=2}^{\infty}\left ( \frac{1}{2} \right )^k=\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=\frac{1}{2}$
[/mm]
Nach der geometrischen Summenformel wäre somit der Wert [mm] \frac{1}{2}. [/mm] Ist das so in Ordnung?
Viele Grüße
Kevin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:08 Mi 28.10.2009 | Autor: | felixf |
Hallo Kevin!
> [mm]\delta_s[/mm] bezeichne das Dirac-Maß an einer Stelle [mm]s \in S[/mm]
> für den Ring [mm]\mathfrak{B}\subset \mathfrak{P}(S)[/mm]. Zeigen
> Sie, dass [mm]\sum_{k\in \mathbb N} a_k \delta_{s_k}[/mm] ein
> additives Maß auf [mm]\mathfrak{B}[/mm] ist, wenn [mm]a_k >0[/mm] mit [mm]k \in \mathbb N[/mm]
> und [mm]s_k \in S[/mm] gilt. Des Weiteren ist für [mm]S=\mathbb R[/mm] der
> Wert von [mm]\sum_{k \in \mathbb N}\frac{1}{2^k} \delta_{\frac{1}{k}}((0,1))[/mm]
> zu bestimmen.
> Hallo,
>
> zur ersten Teilaufgabe:
> [mm]\sum_{k\in \mathbb N} a_k \delta_{s_k}=a_1 \cdot \delta_{s_1} + a_2 \cdot \delta_{s_2} + a_3\cdot \delta_{s_3}+...[/mm]
> soll ein additives Maß sein. Ich muss also laut Def.
> folgendes zeigen:
>
> [mm]\mu: \mathfrak{B}\to \mathbb R[/mm] ist additives Maß, falls
> gilt:
> [mm]E_1, E_2 \in \mathfrak{B} \text{ und } E_1 \cap E_2=\emptyset \Rightarrow \mu(E_1 \cup E_2)=\mu(E_1)+\mu(E_2)[/mm].
> Nun hätte ich mir gedacht, da die [mm]\delta_{s_k}[/mm] ohnehin
> schon Maße sind (das darf ich voraussetzen),
Und selbst wenn nicht: das kannst du sehr einfach zeigen
> gilt für
> alle Indizes [mm]s_k \in S[/mm]:
> [mm]A, B \in \mathfrak{B} \text{ und } A \cap B=\emptyset \Rightarrow \delta_{s_k}(A \cup B)=\delta_{s_k}(A)+\delta_{s_k}(B)[/mm],
> also auch:
> [mm][/mm]
> [mm]a_i \cdot \left ( \delta_{s_i}(A \cup B) \right )=a_i \cdot \left ( \delta_{s_i}(A)+\delta_{s_i}(B) \right[/mm]
> ) = [mm]a_i \cdot \delta_{s_i}(A)+a_i \cdot \delta_{s_i}(B)[/mm]
> [mm][/mm]
... und damit das gleiche fuer die Summe.
> Ich bin mir aber nicht sicher, ob damit die Aussage schon
> bewiesen ist.
Doch, ist sie.
> Und zur zweiten Teilaufgabe habe ich mir überlegt:
>
> Nur für [mm]k=1[/mm] ist [mm]\delta_{1/k}=\delta_1 (0,1)=0[/mm]. Für alle
> anderen [mm]k\in \mathbb N[/mm] gilt [mm]\delta_{1/k}=1[/mm]. Also reicht es,
> die Summe
> [mm]\sum_{k=2}^{\infty}\frac{1}{2^k}[/mm]
> zu betrachten.
Exakt.
> [mm]\sum_{k=2}^{\infty}\frac{1}{2^k}=\sum_{k=2}^{\infty}\left ( \frac{1}{2} \right )^k=\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=\frac{1}{2}[/mm]
>
> Nach der geometrischen Summenformel wäre somit der Wert
> [mm]\frac{1}{2}.[/mm] Ist das so in Ordnung?
Die Aufgabe ist tatsaechlich ziemlich einfach... :)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:47 Mi 28.10.2009 | Autor: | kevin-m. |
Hallo Felix,
danke für deine Antwort.
Viele Grüße
- Kevin -
|
|
|
|