www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Dirichlet-Funktion
Dirichlet-Funktion < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet-Funktion: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 02.05.2019
Autor: TS85

Aufgabe
Dirichlet-Funktion D: [mm] \IR \to \IR: [/mm]
D(x):= [mm] 1_\IQ(x):= \begin{cases} 1, & \mbox{falls } x \in \IQ \\ 0, & \mbox{sonst }\end{cases} [/mm]

Zu zeigen ist, dass D [mm] \mathcal{B}(\IR)-\mathcal{B}(\IR)-messbar [/mm] ist.

Bekannt ist mir, dass eine Fallunterschiedung durchgeführt werden soll mit B [mm] \in \mathcal{B}(\IR). [/mm] Vermutlich wohl mit den rationalen und irrationalen Zahlen. Bekannt ist mir außerdem nur, dass bestimmte Teilmengen des [mm] \IR^n [/mm] Borel-Mengen sind (z.B. offene/abgeschlossene Teilmengen).
Vermutlich lässt sich [mm] \IQ [/mm] als eine bestimtte Teilmenge darstellen.

Was genau muss gezeigt werden?

        
Bezug
Dirichlet-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Do 02.05.2019
Autor: fred97


> Dirichlet-Funktion D: [mm]\IR \to \IR:[/mm]
>  D(x):= [mm]1_\IQ(x):= \begin{cases} 1, & \mbox{falls } x \in \IQ \\ 0, & \mbox{sonst }\end{cases}[/mm]
>  
> Zu zeigen ist, dass D
> [mm]\mathcal{B}(\IR)-\mathcal{B}(\IR)-messbar[/mm] ist.
>  Bekannt ist mir, dass eine Fallunterschiedung
> durchgeführt werden soll mit B [mm]\in \mathcal{B}(\IR).[/mm]
> Vermutlich wohl mit den rationalen und irrationalen Zahlen.
> Bekannt ist mir außerdem nur, dass bestimmte Teilmengen
> des [mm]\IR^n[/mm] Borel-Mengen sind (z.B. offene/abgeschlossene
> Teilmengen).
>  Vermutlich lässt sich [mm]\IQ[/mm] als eine bestimtte Teilmenge
> darstellen.
>  
> Was genau muss gezeigt werden?

Gezeigt werden muss: ist $B [mm] \in \mathcal{B}( \IR)$, [/mm] so ist [mm] $D^{-1}(B) \in \mathcal{B}( \IR)$. [/mm]

Fall 1: $0,1 [mm] \notin [/mm] B$. Dann ist  [mm] $D^{-1}(B) [/mm] = [mm] \emptyset.$ [/mm]

Fall 2: $0,1 [mm] \in [/mm] B$. Dann ist [mm] $D^{-1}(B) =\IR.$ [/mm]

Fall 3: $0 [mm] \in [/mm] B, 1 [mm] \notin [/mm] B$. Dann ist  [mm] $D^{-1}(B) [/mm] = ?$

Fall 4: $0 [mm] \notin [/mm] B, 1 [mm] \in [/mm] B$. Dann ist  [mm] $D^{-1}(B) [/mm] = ?$

Kläre die Fragezeichen in den Fällen 3 und 4.

Dann solltest Du sehen: [mm] $D^{-1}(B) \in \mathcal{B}( \IR)$. [/mm]



Bezug
                
Bezug
Dirichlet-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Do 02.05.2019
Autor: TS85

Heißt noch:

Fall 3: [mm] D^{-1}(B)= \IR [/mm] \ [mm] \IQ [/mm]
Fall 4: [mm] D^{-1}(B)= \IQ [/mm]

Danke für die Info, ohne den formalen Ablauf zu wissen wäre ich darauf nicht gekommen..

Bezug
                        
Bezug
Dirichlet-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Fr 03.05.2019
Autor: fred97

Eine Bemerkung: genauso zeigt man für $A [mm] \subseteq \IR$: [/mm]

[mm] $1_A$ [/mm] ist [mm] $\mathcal{B}(\IR) [/mm] - [mm] \mathcal{B}(\IR)$-messbar $\gdw [/mm] A [mm] \in \mathcal{B}(\IR).$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de