www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Dirichletproblem
Dirichletproblem < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichletproblem: Poissonformel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:53 Mi 26.09.2007
Autor: blackbrute

Aufgabe
Lösung des Dirichletproblems für den Kreis und die obere
Halbebene.

Gesucht ist eine konkrete Beispielrechnung, wobei die
Lösung mithilfe der Poissonformel erfolgt.




Hallo Leute!

Ich möchte das Dirichletproblem mit Hilfe der Poissonformel
für den Kreis und für die obere Halbebene lösen.

Dabei benötige ich folgende Dinge:

1. konkrete Beispielrechnung für beide Probleme inclusive Integral-
auswertung. Vorzugsweise mit dem Residuensatz!

2. Herleitung der Poissonformel für die obere Halbebene mittels
konformer Verpflanzung aus der Poissonformel für den Kreis!

3. konforme Abbildung von der oberen Halbebene auf einen Streifen,
der den Hauptzeig des Logarithmus entspricht. (Zumindest sein Bild)

4. Beweis das das Integral über den Poissonkern gleich 1 ist.

5. Eine besseres Verständnis was ein Dirichletgebiet ist.
Besondere Schwierigkeiten stellt die Definition eines regulären
Punktes dar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielleicht könnt ihr euch an dem folgende Aufgabenblatt orientieren:

http://www.mathematik.uni-kl.de/~uebungen/Brombeer/hm4s/blatt6.pdf

        
Bezug
Dirichletproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Mi 26.09.2007
Autor: leduart

Hallo
Was ist deine konkrete Frage, was kannst du, was nicht?
Wir erarbeiten hier sicher nicht komplette Lösungen, sondern geben Hilfestellung, wenn du an einzelnen Stellen Schwierigkeiten hast. lies mal die Forenregeln.
Gruss leduart

Bezug
                
Bezug
Dirichletproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Mi 26.09.2007
Autor: blackbrute

Meine Aufgabe:

Ich soll das Dirichletproblem auf der oberen Halbebene lösen:

gesucht:  Funktion u(x,y) mit:

1) [mm] \Delta [/mm] u = 0 für (x,y) aus der obere Halbebene OH

und den Randbedingungen:

2) [mm] u_{0}(x,0) =c_{0} [/mm] für [mm] x
für alle x,y auf dem Rand von OH

Die Lösung des Problem ist:

u(x,y) = [mm] c_{1} [/mm] + [mm] \frac{1}{\pi} (c_{0}-c_{1})arcot(\frac{x-x_{1}}{y}) [/mm]

Mir gelingt es nicht das abzuleiten, habe es mit der Poissonformel
für die obere Halbebene probiert. Bin aber bisher nicht zum Ziel gekommen.

Poisonformel

u(x,y) = [mm] \frac{y}{\pi}\integral_{-\infty}^{\infty}{\frac{\phi (t)}{(x-t)^{2}+y^{2}}}dt [/mm]

wobei u(x,0) = [mm] \phi [/mm] (x) und [mm] \Delta [/mm] u = 0 für y>0

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de