www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Diskrete Gleichverteilung
Diskrete Gleichverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Gleichverteilung: Korrektur
Status: (Frage) überfällig Status 
Datum: 17:34 Do 10.06.2010
Autor: grenife

Aufgabe
Eine Gruppe von $n$ Spielern wird in zwei Teams (rot und blau) gemäß der folgenden Vorschrift aufgeteilt:

Zunächst wird eine Zahl $X$ zufällig aus der Menge [mm] $\left\{1,2,\ldots,n-1\right\}$ [/mm] gezogen, wobei alle Zahlen gleichwahrscheinlich sein sollen. Anschließend werden $X$ Spieler ausgewählt, die das rote Team bilden sollen, wobei jeder Spieler die gleiche Wahrscheinlichkeit besitzt, gezogen zu werden. Die übrigen $n-X$ Spieler bilden das blaue Team.

a) Ermitteln Sie den Erwartungswert der Größe des blauen Teams.

Betrachten Sie einen beliebigen Spieler A.

b) Bestimmen Sie die Wahrscheinlichkeit, dass das Team von Spieler A eine Größe von $k$ mit [mm] $1\leq k\leq [/mm] n-1$ besitzt.

c) Bestimmen Sie den Erwartungswert der Größe des Teams von Spieler A.

Nach der Aufteilung der Teams bestimmen beide einen Mannschaftskapitän, wobei jeder Spieler eine gleich große Wahrscheinlichkeit besitzt, zum Kapitän gewählt zu werden.

d) Bestimmen Sie die bedingte Verteilung der Größe des Teams von Spieler A unter der Bedingung, dass Spieler A der Kapität seiner Mannschaft ist.

Hallo zusammen,

wäre dankbar, wenn jemand meinen Lösungsweg korrigieren könnte!

zu a)
$X$ ist gleichverteilt auf der diskreten Menge [mm] $\left\{1,2,\ldots,n-1\right\}$ [/mm] und beschreibt die Größe des roten Teams. Dann ist
[mm] $E(X)=(1+(n-1))/2=\frac{n}{2}$ [/mm]

zu b)
Spieler A kann in beiden Teams sein, ich suche also die W'keit, dass das eine oder das andere Team die Größe $k$ hat.
Also:
$P(X=k)+P(n-X=k)$
$X$ ist gleichverteilt auf [mm] $\left\{1,2,\ldots,n-1\right\}$,also [/mm] ist $P(X=k)=1/(n-1)$. Für $(n-X)$ müsste das Gleiche gelten, also wäre doch die W'keit
[mm] $\frac{2}{n-1}$, [/mm] oder vertue ich mich da?

Viele Grüße
Gregor


        
Bezug
Diskrete Gleichverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 11.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de