www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Diskrete Metrik
Diskrete Metrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Metrik: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:21 So 09.03.2014
Autor: Babybel73

Hallo zusammen

Brauche Hilfe bei folgender Aufgabe:
Es sei X eine nichtleere Menge und d die diskrete Metrik auf X. Bestimme alle offenen und abgeschlossenen Mengen von X.

Also die diskrete Metrik ist ja:
[mm] d(x,y):=\begin{cases} 0, & \mbox{für } x=y \\ 1, & \mbox{für } x\not=y \end{cases} [/mm]

Wie soll ich jetzt alle Mengen bestimmen die offenen und abgeschlossen sind?

        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 09.03.2014
Autor: Sax

Hi,

überlege dir Folgendes:

Wenn [mm] M\subseteq [/mm] X ist und [mm] x\in [/mm] M, welche Elemente liegen dann in [mm] U_{\bruch{1}{2}}(x) [/mm] ? Wieso ist M dann offen ? Was folgt daraus für abgeschlossenen Mengen ?

Gruß Sax.

Bezug
                
Bezug
Diskrete Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 09.03.2014
Autor: Babybel73

Hallo Sax

> Hi,
>  
> überlege dir Folgendes:
>  
> Wenn [mm]M\subseteq[/mm] X ist und [mm]x\in[/mm] M, welche Elemente liegen
> dann in [mm]U_{\bruch{1}{2}}(x)[/mm] ? Wieso ist M dann offen ? Was
> folgt daraus für abgeschlossenen Mengen ?
>  

Was meinst du genau mit [mm] U_{\bruch{1}{2}}(x)? [/mm]
Meinst du damit die offene Kugel um x?



> Gruß Sax.


Bezug
                        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 So 09.03.2014
Autor: Sax

Hi,

ja.

Die offene Kugel mit Radius 0,5 ist gemeint.

Gruß Sax.

Bezug
                                
Bezug
Diskrete Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 So 09.03.2014
Autor: Babybel73

Hallo Sax

Also wir haben die offene Kugel definiert als:
[mm] B_r(x_0)={x \in X d(x,x_0)
Somit liegen doch alle Elemente in [mm] B_{\bruch{1}{2}} [/mm] für die gilt x=y, da ja bei diesen d(x,y)=0<0.5 gilt. (Bei [mm] x\not=y [/mm] wäre ja d(x,y)=1>0.5) Ist das richtig?
M ist dann offen, da es sich ja um die offene Kugel handelt??
Und was folgt nun für abgeschlossene Mengen?


Bezug
                                        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 So 09.03.2014
Autor: Sax

Hi,

> Hallo Sax
>
> Also wir haben die offene Kugel definiert als:
> [mm]B_r(x_0)={x \in X d(x,x_0)
>  
> Somit liegen doch alle Elemente in [mm]B_{\bruch{1}{2}}[/mm] für
> die gilt x=y, da ja bei diesen d(x,y)=0<0.5 gilt. (Bei
> [mm]x\not=y[/mm] wäre ja d(x,y)=1>0.5) Ist das richtig?

Das ist richtig, man kann es noch etwas prägnanter formulieren : B={x}.

> M ist dann offen, da es sich ja um die offene Kugel
> handelt??

Nein, M ist deshalb offen, weil die offene Kugel B ganz in M enthalten ist.
Weißt du, dass wir gerade bewiesen haben, dass jede Teilmenge M von X offen ist ?

>  Und was folgt nun für abgeschlossene Mengen?

Die Frage muss lauten : "Wann ist eine Menge abgeschlossen ?"
Die Antwort heißt "Sie ist abgeschlossen, wenn ihr Komplement offen ist."

>  

Mit dem, was wir oben gezeigt haben, folgt also : "..."

Gruß Sax.

Bezug
                                                
Bezug
Diskrete Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 So 09.03.2014
Autor: Babybel73

Hallo Sax

Erstmals vielen, vielen Dank für deine Hilfe!

> Hi,
>  
> > Hallo Sax
> >
> > Also wir haben die offene Kugel definiert als:
> > [mm]B_r(x_0)={x \in X d(x,x_0)
>  >  
> > Somit liegen doch alle Elemente in [mm]B_{\bruch{1}{2}}[/mm] für
> > die gilt x=y, da ja bei diesen d(x,y)=0<0.5 gilt. (Bei
> > [mm]x\not=y[/mm] wäre ja d(x,y)=1>0.5) Ist das richtig?
>
> Das ist richtig, man kann es noch etwas prägnanter
> formulieren : B={x}.
>  
> > M ist dann offen, da es sich ja um die offene Kugel
> > handelt??
>  
> Nein, M ist deshalb offen, weil die offene Kugel B ganz in
> M enthalten ist.
>  Weißt du, dass wir gerade bewiesen haben, dass jede
> Teilmenge M von X offen ist ?


Ja, denn M ist offen [mm] \gdw \forall [/mm] x [mm] \in [/mm] M [mm] \exists \varepsilon [/mm] > 0 (z.B. [mm] \varepsilon=0.5): B_{\varepsilon}(x) \subset [/mm] M


>  
> >  Und was folgt nun für abgeschlossene Mengen?

>  
> Die Frage muss lauten : "Wann ist eine Menge abgeschlossen
> ?"
>  Die Antwort heißt "Sie ist abgeschlossen, wenn ihr
> Komplement offen ist."

Ja, und was folgt jetzt für M?


>  >  
> Mit dem, was wir oben gezeigt haben, folgt also : "..."
>

???


> Gruß Sax.


Bezug
                                                        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Mo 10.03.2014
Autor: Marcel

Hallo,

> Hallo Sax
>  
> Erstmals vielen, vielen Dank für deine Hilfe!
>
> > Hi,
>  >  
> > > Hallo Sax
> > >
> > > Also wir haben die offene Kugel definiert als:
> > > [mm]B_r(x_0)={x \in X d(x,x_0)
>  >  >  
> > > Somit liegen doch alle Elemente in [mm]B_{\bruch{1}{2}}[/mm] für
> > > die gilt x=y, da ja bei diesen d(x,y)=0<0.5 gilt. (Bei
> > > [mm]x\not=y[/mm] wäre ja d(x,y)=1>0.5) Ist das richtig?
> >
> > Das ist richtig, man kann es noch etwas prägnanter
> > formulieren : B={x}.
>  >  
> > > M ist dann offen, da es sich ja um die offene Kugel
> > > handelt??
>  >  
> > Nein, M ist deshalb offen, weil die offene Kugel B ganz in
> > M enthalten ist.
>  >  Weißt du, dass wir gerade bewiesen haben, dass jede
> > Teilmenge M von X offen ist ?
>  
>
> Ja, denn M ist offen [mm]\gdw \forall[/mm] x [mm]\in[/mm] M [mm]\exists \varepsilon[/mm]
> > 0 (z.B. [mm]\varepsilon=0.5): B_{\varepsilon}(x) \subset[/mm] M

ja, oder so: Ihr habt gezeigt, dass einelementige Mengen offen sind.
Bekanntlich sind beliebige Vereinigungen offener Mengen wieder offen,
so dass für jedes $M [mm] \subseteq [/mm] X$ (bzw. $M [mm] \in \text{Pot}(X)$) [/mm] wegen

    [mm] $M=\bigcup_{x \in M}\{x\}$ [/mm]

folglich [mm] $M\,$ [/mm] offen sein muss.

> > >  Und was folgt nun für abgeschlossene Mengen?

>  >  
> > Die Frage muss lauten : "Wann ist eine Menge abgeschlossen
> > ?"
>  >  Die Antwort heißt "Sie ist abgeschlossen, wenn ihr
> > Komplement offen ist."
>  
> Ja, und was folgt jetzt für M?

Wir wissen bereits, dass JEDE Menge

    $R [mm] \subseteq [/mm] X$

OFFEN sein muss. Nun wollen wir wissen, welche $M [mm] \subseteq [/mm] X$ denn abgeschlossen
sind:

Dazu schauen wir uns

    [mm] $M^c:=X \setminus [/mm] M$

an. Offenbar ist

    [mm] $\underbrace{M^c}_{\widehat{\,=\,}\,R} \subseteq [/mm] X$

dann auch offen - also ist (jede Menge) $M [mm] \subseteq [/mm] X$ sowohl ... als auch ...

P.S. Du kannst auch mit Folgen argumentieren: Sei $M [mm] \subseteq X\,.$ [/mm] Eine Menge
[mm] $M\,$ [/mm] ist genau dann abgeschlossen, wenn jede Folge, die in [mm] $X\,$ [/mm] konvergiert,
ihren Grenzwert schon in [mm] $M\,$ [/mm] hat.

Seien also [mm] $x_n \in [/mm] M$ mit [mm] $x_n \to [/mm] x [mm] \in X\,.$ [/mm] Zeige, dass dann [mm] $x_n$ [/mm] ab einem genügend
großen Index konstant sein muss. Da alle [mm] $x_n \in [/mm] M$ sind, folgt daraus
sofort $x [mm] \in M\,.$ [/mm]

Gruß,
  Marcel

Bezug
                                                                
Bezug
Diskrete Metrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mo 10.03.2014
Autor: Babybel73

Hallo Marcel

Vielen Dank für deine Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de