www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Diskretheit zeigen
Diskretheit zeigen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskretheit zeigen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:47 Do 22.10.2009
Autor: Sybille

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Morgen,

ich weiß nicht mehr weiter. Ich sitze nun schon lange Zeit an einem Beweis, an dem ich nun verzweifel.
Und zwar soll gezeigt werden, dass G={log a|a [mm] \in [/mm] U^+}, wobei U^+ die positive Einheitengruppe des Ganzheitsrings ist, also N(a)=1 (a hat dabei ja die Form b+c [mm] \wurzel{d}) [/mm]
Ich habe als Ansatz etwas mit 0<log a<log [mm] \bruch{5}{4} [/mm] , aber wie ich da weitermachen soll, weiß ich nicht.
Ich freue mich sehr über Antworten. Gerne auch schnelle Antworten, da ich nicht auf die Idee gekommen bin, meine Frage in einem Forum zu posten und ich nun nicht mehr viel Zeit zur Beantwortung habe.

Vielen Dank
Sybille

        
Bezug
Diskretheit zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Fr 23.10.2009
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Sybille!

> ich weiß nicht mehr weiter. Ich sitze nun schon lange Zeit
> an einem Beweis, an dem ich nun verzweifel.
>  Und zwar soll gezeigt werden, dass G={log a|a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U^+},

fehlt hier ein "diskret ist"?

> wobei U^+ die positive Einheitengruppe des Ganzheitsrings
> ist, also N(a)=1

Und was ist mit Elementen, die $< 0$ sind? Davon ist der Logarithmus ja nicht definiert. Oer soll oben $\log |a|$ anstelle $\log a$ stehen?

> (a hat dabei ja die Form b+c [mm]\wurzel{d})[/mm]
>  Ich habe als Ansatz etwas mit 0<log a<log [mm]\bruch{5}{4}[/mm] ,
> aber wie ich da weitermachen soll, weiß ich nicht.
>  Ich freue mich sehr über Antworten. Gerne auch schnelle
> Antworten, da ich nicht auf die Idee gekommen bin, meine
> Frage in einem Forum zu posten und ich nun nicht mehr viel
> Zeit zur Beantwortung habe.

Schreib doch mal was du schon ueber die Einheitengruppe weisst. (Stichwort: Einheitenrang)

Ansonsten: es reicht aus zu zeigen, dass es nur endlich viele Einheiten $a$ mit $0 < [mm] \log [/mm] a < T$ (fuer irgendein festes $T > 0$) gibt. Wenn dann naemlich die obige Menge nicht diskret waer, koenntest du einen Haeufungspunkt nehmen und eine Einheit [mm] $\varepsilon$ [/mm] so, dass [mm] $\log \varepsilon$ [/mm] ganz nah am Haufungspunkt liegt: dann multiplizierst du die Einheiten, die den Haeufungspunkt geben, mit [mm] $\varepsilon^{-1}$ [/mm] und verschiebst so (in der Menge) alles um [mm] $-\log \varepsilon$: [/mm] damit hast du den Haeufungspunkt in $(0, T)$, was ein Widerspruch dazu ist dass es in dem Intervall nur endlich viele Elemente gibt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de