www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Diskriminante quadr. Gleichung
Diskriminante quadr. Gleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskriminante quadr. Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Fr 13.07.2012
Autor: hula

Hallöchen

Wenn ich eine Gleichung habe

$$a [mm] \phi^2 [/mm] +2 b [mm] \phi [/mm] + [mm] c\ge [/mm] 0$$

wobei $a,b,c$ Konstanten sind und diese Gleichung für alle [mm] $\phi \in \mathbb{R}$ [/mm] gelten. Wieso folgt dann, dass

[mm] $$|b|\le \sqrt{ab}$$ [/mm]

Dankeschöön

hula

        
Bezug
Diskriminante quadr. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Fr 13.07.2012
Autor: MathePower

Hallo hula,



> Hallöchen
>  
> Wenn ich eine Gleichung habe
>  
> [mm]a \phi^2 +2 b \phi + c\ge 0[/mm]
>  
> wobei [mm]a,b,c[/mm] Konstanten sind und diese Gleichung für alle
> [mm]\phi \in \mathbb{R}[/mm] gelten. Wieso folgt dann, dass
>  
> [mm]|b|\le \sqrt{ab}[/mm]

>


Das muss wohl so lauten:

[mm]\vmat{b} \le \wurzel{a\blue{c}}[/mm]

Das folgt durch simple Umformung
unter der Voraussetzung, dass [mm]a > 0[/mm] ist.

Damit dann aus dem Produkt a*c,
die Wurzel gezogen werden kann,
muß [mm]c \ge 0[/mm] gelten.


> Dankeschöön
>  
> hula


Gruss
MathePower

Bezug
                
Bezug
Diskriminante quadr. Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 13.07.2012
Autor: hula

Hallöchen MathPower

Genau, $a,c [mm] \ge [/mm] 0$ und dort sollte wirklich ein $c$ anstatt $b$ stehen. Wie geht dann die Umformung? Entschuldige, aber ich sehe sie nicht ein:)

Dankeschöön

hula

Bezug
                        
Bezug
Diskriminante quadr. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Fr 13.07.2012
Autor: Valerie20

Hi!

> Hallöchen MathPower
>  
> Genau, [mm]a,c \ge 0[/mm] und dort sollte wirklich ein [mm]c[/mm] anstatt [mm]b[/mm]
> stehen. Wie geht dann die Umformung? Entschuldige, aber ich
> sehe sie nicht ein:)
>  
> Dankeschöön
>  
> hula

Veranschaulicht stellt deine Gleichung doch eine Parabel dar, die Keine Schnittpunkte (Möglicherweise einen Berührpunkt) mit der [mm] \phi-Achse [/mm] besitzt, da [mm] a \phi^2 +2 b \phi + c\red{\ge} 0 [/mm] .

Nach der Mitternachts (bzw. Abc)-Formel gilt doch:

[mm]\phi_{1,2}=\frac{-2b\pm \sqrt{4b^2-4ac}}{2a}[/mm]


Damit die Parabel nun aber keine Schnittpunkte mit der [mm] \phi-Achse [/mm] besitzt, muss die Diskriminante kleiner oder gleich Null sein:

[mm] $4b^2-4ac\le [/mm] 0$

[mm] $\Rightarrow |b|\le\sqrt{ac}$ [/mm]

Valerie




Bezug
                        
Bezug
Diskriminante quadr. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 13.07.2012
Autor: leduart

Hallo
beser mit quadratischer Ergänzung, [mm] y=\phi [/mm]
[mm] a(y^2+2b/a+b^2/a^2)-b^2/a [/mm] +c [mm] \ge0 [/mm]
[mm] a(y+b/a)^2-b^2/a [/mm] +c [mm] \ge0 [/mm]
der erste term ist immer [mm] \ge [/mm] 0 also muss auch der 2 te Term
[mm] -b^2/a [/mm] +c [mm] \ge [/mm] 0 sein daraus deine Ungl.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de