www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Distributionen
Distributionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Distributionen: Frage
Status: (Frage) beantwortet Status 
Datum: 22:49 Sa 01.01.2005
Autor: mando

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=11151

Wir haben über die Ferien die Aufgabe:
Gibt es eine stetige Funktion u: [-1,1]->R ,so dass für alle stetigen Funktionen f: [-1,1]->R die Gleichung
[mm] \integral_{-1}^{1} {f(t)u(t) dt} = f(0)[/mm]
gilt?
gehabt und ich sitz schon die ganze Zeit daran, komm aber auf nichts vernünftiges. Das einzige worauf ich gekommen bin war:
[mm] \integral_{-1}^{1} {u(t) dt} = 1[/mm]

Kann mir jemand helfen? ein Ansatz oder ne Idee wärschon schön:-)

        
Bezug
Distributionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Sa 01.01.2005
Autor: Stefan

Hallo mando!

Nein, es kann keine solche Funktion geben. Nur eine Distribution, die sogenannte Delta-Distribution, kann diese Bedingungen erfüllen.

Idee: Zeige, dass für alle [mm] $x_0 \in [/mm] [-1,1]$, [mm] $x_0 \ne [/mm] 0$, notwendigerweise [mm] $u(x_0)=0$ [/mm] gelten muss (und dann folgt mit Hilfe der bereits von dir hergeleiteten Identität, dass es eine solche Funktion nicht geben kann).

Wie macht man das? Nun, wähle dir ein [mm] $x_0 \ne [/mm] 0$ und nehme [mm] $u(x_0) \ne [/mm] 0$ an, oBdA [mm] $u(x_0)>0$. [/mm] Da $u$ stetig ist, gilt auch $u>0$ auf einer kleinen Umgebung [mm] $U(x_0)$, [/mm] die $0$ nicht enthält. Konstruiere nun eine stetige Funktion mit $f(x) > 0$ für alle $x [mm] \in U(x_0)$, [/mm] $f(x) [mm] \ge [/mm] 0$ für alle $x [mm] \in [/mm] [-1,1]$ und $f [mm] \equiv [/mm] 0$ außerhalb von [mm] $U(x_0)$, [/mm] insbesondere mit $f(0)=0$, etwa eine verstetigte Indikatorfunktion, die [mm] $U(x_0)$, [/mm] aber alle anderen Punkte (insbesondere $0$) nicht im Träger hat.

Dann kommt es locker und leicht hin. Melde dich wieder, wenn du Probleme damit hast. Die kriegen wir schon gelöst. :-)

Liebe Grüße
Stefan

Bezug
        
Bezug
Distributionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 So 02.01.2005
Autor: mando

Jo, danke für die schnelle Hilfe, ich denke ich habe es jetzt verstanden. Ich werd jetzt mal versuchen alles im Zusammenhang aufzuschreiben.

Mfg Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de