www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Divergenz von n+5
Divergenz von n+5 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Divergenz von n+5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Sa 26.11.2005
Autor: SusiSommer

Hallo,

ich möchte beweisen, dass [mm] a_{n}= [/mm] n+5 nicht konvergiert. Mir ist das im Prinzip schon vollkommen klar. Ich hab nur Schwierigkeiten, dass korrekt als Beweis aufzuschreiben und möchte an meiner Aufgab nicht schon wieder ein "naja" stehen haben.

Also meine Idee ist, da die Folge monton wachsend ist (muss ich das auch beweisen und wenn ja wie?) darf sie keine obere Schranke haben. Mir erscheint das vollkommen logisch und wahrscheinlich habe ich deshalb das Problem, das in einem formalen Beweis zu verpacken.

Vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Divergenz von n+5: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Sa 26.11.2005
Autor: Christian

Hallo!

> Hallo,
>  
> ich möchte beweisen, dass [mm]a_{n}=[/mm] n+5 nicht konvergiert. Mir
> ist das im Prinzip schon vollkommen klar. Ich hab nur
> Schwierigkeiten, dass korrekt als Beweis aufzuschreiben und
> möchte an meiner Aufgab nicht schon wieder ein "naja"
> stehen haben.
>
> Also meine Idee ist, da die Folge monton wachsend ist (muss
> ich das auch beweisen und wenn ja wie?) darf sie keine
> obere Schranke haben.

Das reicht so leider nicht!
Nimm zum Beispiel die Folge [mm] $a_n:=1-\frac{1}{n}$. [/mm]
Diese ist monoton wachsend, aber offensichtlich nach oben beschränkt, so zum Beispiel durch 10000.

> Mir erscheint das vollkommen logisch
> und wahrscheinlich habe ich deshalb das Problem, das in
> einem formalen Beweis zu verpacken.

Keine Angst, das lernst Du schon :-)

Aber zurück zum Problem.
Was Du eigentlich willst, ist, daß die Folge nach oben nicht beschränkt ist.
Das zeigst Du am besten, indem Du annimmst, es existiere eine obere Schranke, sagen wir $c>0$, und dies zum Widerspruch führst, indem Du ein $N$ angibst mit [mm] $a_N>c$. [/mm]
Das ist in diesem Fall hier ziemlich simpel und banal, aber ich schreib es Dir vielleicht mal auf, so wie es auch Korrekteure freuen könnte ;-) :

Beh.: [mm] $a_n:=n+5$ [/mm] ist nach oben unbeschränkt.

Bew.: durch Widerspruch.

Angen., es existiert $C>0$ mit [mm] $\forall [/mm] n [mm] \in \IN:$ $a_n Nach dem Satz von Archimedes exisiert ein $N [mm] \in \IN$ [/mm] mit $N>C$.
Dann ist aber, mit diesem $N$: [mm] $a_N=N+5>C+5>C$. [/mm]
Das ist aber der gewünschte Widerspruch,
also ist [mm] $a_n$ [/mm] nach oben nicht beschränkt.

Aber das ist schon seeeeehr ausführlich :)
Aber am Anfang ist es manchmal wichtig, daß man solche Sachen, auch so ganz einfache, mal richtig formalisiert aufschreibt.

Gruß,
Christian





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de