www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Dividierte Differenzen
Dividierte Differenzen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dividierte Differenzen: Grenzwert
Status: (Frage) überfällig Status 
Datum: 15:38 Do 13.01.2011
Autor: dennis2

Aufgabe
Sei f eine n-mal stetige Funktion und [mm] x_0 \in \IR. [/mm] Betrachten Sie eine Folge von paarweise verschiedenen Stützpunkten [mm] x_1^{(j)},...,x_n^{(j)}, [/mm] j=0,1,2,... mit [mm] x_i^{(j)}\to x_0 [/mm] für [mm] j\to \infty. [/mm] Es bezeichne [mm] P_n^{(j)} [/mm] das Interpolationspolynom, welches f an den Stützstellen [mm] x_0,x_1^{(j)},...,x_n^{(j)} [/mm] interpoliert.

Untersuchen Sie den Grenzwert der Folge von Interpolationspolynomen [mm] P_n^{(j)}für j\to \infty. [/mm]

Hinweis: Für die "Dividierten Differenzen" gilt:

[mm] [f_0,...,f_i]=\bruch{1}{i!}f^{(i)}(\zeta_i^{(j)}) [/mm]  

mit [mm] \min\left\{x_0,x_1^{(j)},...,x_n^{(j)}\right\}<\zeta_i^{(j)}<\max\left\{x_0,x_1^{(j)},..,x_n^{(j)}\right\}. [/mm]

Ich habe nur sehr wenig bisher zu Wege gebracht.
Da im Hinweis etwas von "Dividierten Differenzen" steht, bin ich jetzt mal davon ausgegangen, dass man die Newton´sche Interpolationsformel heranziehen muss:

[mm] P_{0...n}^{(j)}(x_i^{(j)})=\summe_{i=0}^{n}[f_0,...,f_i]\produkt_{k=0}^{i-1}(x_i^{(j)}-x_k^{(j)}) [/mm]

Und mit dem Hinweis habe ich dann:

[mm] P_{0...n}^{(j)}(\zeta_i^{(j)})=\summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(\zeta_i^{(j)}-x_k^{(j)}) [/mm]

Wenn ich den Hinweis richtig verstanden habe, ist [mm] \zeta_i^{(j)} [/mm] ein Folgenglied der Folge von verschiedenen Stützstellen. Das bedeutet doch aber, dass [mm] \zeta_i^{(j)}\to x_0 [/mm] für [mm] j\to \infty. [/mm] Und da in jeder Multiplikation der Faktor [mm] (\zeta_i^{(j)}-x_0) [/mm] steht, strebt das doch dann gegen Null.

Ich würde daher sagen, dass der Grenzwert der Folge von Interpolationspolynomen gegen 0 strebt für [mm] j\to \infty. [/mm]


Ich würde mich sehr (!) freuen, wenn mir jemand irgendwie behilflich sein kann!

        
Bezug
Dividierte Differenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Do 13.01.2011
Autor: dennis2

Aufgabe
Hat jemand einen Ansatz für mich, denn meiner ist - glaube ich - verkehrt. Aber ich komme auf keinen anderen Ansatz.

Wäre sehr nett! Komme nicht weiter.

Bezug
        
Bezug
Dividierte Differenzen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:29 Do 13.01.2011
Autor: dennis2

Aufgabe
Ich habe nochmal ein bisschen rumprobiert:

[mm] P_{0,...,n}(x)=\summe_{i=0}^{n}[f_0,...,f_i]\produkt_{k=1}^{i-1}(x-x_k)=\summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(x-x_k) [/mm] laut dem Hinweis in der Aufgabenstellung [korrekterweise hätte ich für die Stützpunkte statt [mm] x_k [/mm] eigentlich [mm] x_i^{(j)} [/mm] schreiben müssen, aber das finde ich sehr unübersichtlich, deswegen habe ichs weggelassen.]

Weiter gilt:

[mm] \summe_{i=0}^{n}\bruch{f^{(i)}(\zeta_i^{(j)})}{i!}\produkt_{k=0}^{i-1}(x-x_k)<\summe_{i=0}^{n}f^{(i)}(\zeta_i^{(j)})\produkt_{k=1}^{i-1}(x-x_k) [/mm]

Geht nun [mm] j\to \infty, [/mm] so (würde ich sagen) gehen ja die ganzen Stützstellen gegen [mm] x_0, [/mm] d.h. das Produkt auf der rechten Seite ändert sich und außerdem folgt dann wegen

[mm] \min\{x_0,x_1^{(j)},...,x_i^{(j)}\}=\min\{x_0\}=x_0 [/mm] für [mm] j\to \infty [/mm]
[ebenso: [mm] max\{x_0\}=x_0 [/mm] für [mm] j\to \infty], [/mm]

dass [mm] \zeta=x_0 [/mm] für [mm] j\to \infty [/mm] [da [mm] x_0<\zeta
Deswegen gilt weiter:

[mm] \summe_{i=0}^{n}f^{(i)}(\zeta_i^{(j)})\produkt_{k=1}^{i-1}(x-x_k)\to \summe_{i=0}^{n}f^{(i)}(x_0)(x-x_0)^{i-1} [/mm] für [mm] j\to \infty [/mm]


Also [mm] \limes_{j\rightarrow\infty}P_n^{(j)}=\summe_{i=0}^{n}f^{(i)}(x_0)(x-x_0)^{i-1} [/mm]



Ich würde deswegen sagen, dass so der Grenzwert aussieht.

Ich habe KEINE Ahnung, ob das nicht evtl. totaler Blödsinn ist, aber da ich bisher keine Hilfestellungen hier bekommen habe, hab ich einfach mal losgelegt, nachdem ich gemerkt habe, dass mein erster Ansatz jedenfalls falsch war.

Ich bitte nochmal um Hilfe.

Bezug
                
Bezug
Dividierte Differenzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 15.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Dividierte Differenzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 15.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de