www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Division mit Rest
Division mit Rest < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Division mit Rest: Frage zur Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 11.11.2008
Autor: DerNo

Aufgabe
Sei n [mm] \in \IZ, [/mm] n [mm] \not= [/mm] 0. Zeigen Sie, daß es für jedes m [mm] \in \IZ [/mm] eindeutig durch m bestimmte q, r [mm] \in \IZ [/mm] gibt mit

m = qn + r und [mm] 0\le [/mm] r < |n| .

q heißt partieller Quotient und r Rest der Divison von m durch n.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





Ich hab jetzt glaube schon ne vollständige Induktion dafür gemacht, aber muss ich nicht einfach nur zeigen, dass die beiden eindeutig sind? Wie mach ich das denn so auf die schnelle??

Weiß jetzt ebend bloß nicht so genau was ebend gemeint ist, sprich, das eigentliche Ziel...

Brauch also nur den Anstoß , bzw. auch nur ne Bestätigung dass ne vollständige Ind. hier richtig ist.

(Ich glaub andere haben die Aufgabe on gestellt, aba die wollen ja ne Lösung, ich nur den Anstoß) :)

        
Bezug
Division mit Rest: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 11.11.2008
Autor: angela.h.b.


> Sei n [mm]\in \IZ,[/mm] n [mm]\not=[/mm] 0. Zeigen Sie, daß es für jedes m
> [mm]\in \IZ[/mm] eindeutig durch m bestimmte q, r [mm]\in \IZ[/mm] gibt mit
>  
> m = qn + r und [mm]0\le[/mm] r < |n| .
>  
> q heißt partieller Quotient und r Rest der Divison von m
> durch n.  

>
> Ich hab jetzt glaube schon ne vollständige Induktion dafür
> gemacht, aber muss ich nicht einfach nur zeigen, dass die
> beiden eindeutig sind? Wie mach ich das denn so auf die
> schnelle??

Hallo,

[willkommenmr].

Du glaubst (?), daß Du es mit Induktion gemacht hast? Das mußt Du doch gemerkt haben...
Mir ist im Moment nicht klar, wie das mit Induktion geht - aber das muß nichts heißen.

Auf jeden Fall mußt Du nicht nur die Eindeutigkeit zeigen, sondern die Existenz.

Auf die Schnelle könnt's so klappen:

Betrachte die Menge  [mm] M:=\{ m- an | a\in \IZ, m-an\ge 0\}. [/mm]

Das ist eine Teilmenge der natürlichen Zahlen, also gibt es ein kleinstes Element r.

Jetzt kannst Du zeigen, daß [mm] 0\le [/mm] r < n ist.

Als nächstes nimm an, daß es zwei solche Darstellungen gibt und führe das zum Widerspruch.

Gruß v. Angela







>
> Weiß jetzt ebend bloß nicht so genau was ebend gemeint ist,
> sprich, das eigentliche Ziel...
>  
> Brauch also nur den Anstoß , bzw. auch nur ne Bestätigung
> dass ne vollständige Ind. hier richtig ist.
>  
> (Ich glaub andere haben die Aufgabe on gestellt, aba die
> wollen ja ne Lösung, ich nur den Anstoß) :)


Bezug
                
Bezug
Division mit Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 11.11.2008
Autor: DerNo

Achso...
Ja, siehste ich weiß ja eben net obs ne Induktion ist :D
Weils nen Anfang hat und nen vom Teiler bestimmtes Ende, was aba schier unendlich groß sein kann :)
Anfang Ende und das dazwische habsch eben Induktionsmäßig nachgewiesen...


Aber Danke für den Ansatz :)

Bezug
                        
Bezug
Division mit Rest: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Mi 12.11.2008
Autor: reverend

gipsa aune doische Übasezzunk von?

Ganz ehrlich, dies ist kein Chat, sondern ein Forum für Hilfestellungen. Du musst ja kein Behördendeutsch schreiben, aber ein bisschen kannst Du Dich schon um sprachliche Genauigkeit bemühen.

iwi vllt.
<3

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de