www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dominanzrelation
Dominanzrelation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dominanzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Do 07.04.2005
Autor: MrElgusive

Hallo!

Ich soll diesmal folgenden Satz beweisen, habe aber keinen wirklichen Ansatz und kann deshalb auch keinen Gedankengang dazu beitragen. Ich weiß gerade mal die Definition einer Dominanzrelation und dass dieser Satz verwandt mit dem Thema von Cliquen ist.

Sei R eine Dominanzrelation auf X und sei $x [mm] \in [/mm] X$ ein Element mit maximaler 2-Mächtigkeit. Dann gibt es von x zu jedem $y [mm] \in [/mm] X$ mit $y [mm] \not= [/mm] x$ mindestens eine ein- oder zweistufige Verbindung.

Danke für eure Hilfe,
  Christian.

        
Bezug
Dominanzrelation: Definition?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:08 Fr 08.04.2005
Autor: Gnometech

Guten Morgen!

Hm, ich kenne zwar einige Relationen (ein oder zwei auch persönlich ;-)), aber von einer Dominanzrelation habe ich noch nicht gehört.

Gib doch bitte die entsprechenden Definitionen mit an, dann habe ich auch eine Chance, mitzudenken. :-)

Danke!

Lars

Bezug
                
Bezug
Dominanzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Fr 08.04.2005
Autor: MrElgusive

Hallo!

Sei R eine Relation auf X mit Adjazenzmatrix A und sei $k [mm] \in \IN$. [/mm] Die k-Mächtigkeit eines $x [mm] \in [/mm] X$ ist die Anzahl aller $ [mm] \le [/mm] (k-1)$ -stufigen Verbindungen von x zu einem $y [mm] \in [/mm] X,$ also die k-Mächtigkeit = Zeilensumme (von x) in $A + [mm] A^{2} [/mm] + ... + [mm] A^{k}.$ [/mm]

Und eine Dominanzrelation auf X ist nun eine Relation R, für die alle $x,y [mm] \in [/mm] X, y [mm] \not= [/mm] x,$ entweder $xRy$ oder $yRx$ (aber nicht beides) gilt.

Und für den Fall $K=2$ soll man nun den Satz in meinem ersten Posting beweisen.

Das mit den Adjazenzmatrizen und den Relationen ist mir ja alles klar, aber ich habe nur keinen Schimmer, wie ich den Satz beweisen soll.

Grüße,
  Christian.

Bezug
        
Bezug
Dominanzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 So 10.04.2005
Autor: Gnometech

Grüße!

Also, nach einer kurzen Diskussion mit meinem Mitbewohner, der in Graphentheorie etwas fitter ist als ich, haben wir eine Lösung gefunden. :-)

Ich habe das Problem erstmal umformuliert: die Menge $X$ habe ich als Eckenmenge eines Graphen gesehen - je zwei Ecken sind duch eine (gerichtete) Kante verbunden. Das reflektiert die Relation, die zwischen je zwei Punkten $x$ und $y$ besteht.

Einen solchen Graphen nennt man meinem Mitbewohner zufolge "Turniergraph". Die Anschauung ist, dass ein Turnier zugrunde liegt, in dem jeder gegen jeden spielt und die Richtung der Kante gibt an, wer gewonnen hat.

Also, zum formalen Beweis. Unterschlagen hast Du die Bedingung, dass $X$ endlich ist (ist aber eigentlich klar, wenn Du eine Matrix aufstellst). Ich führe zunächst etwas Notation ein: zu $x [mm] \in [/mm] X$ sei [mm] $m_1(x)$ [/mm] die 1-Mächtigkeit von $x$, also die Mächtigkeit der Menge

[mm] $I_1(x) [/mm] = [mm] \{ y \in X : x R y \}$ [/mm]

Entsprechend sei [mm] $m_2(x)$ [/mm] die 2-Mächtigkeit von $x$, also die Mächtigkeit der Menge

[mm] $I_2(x) [/mm] = [mm] \{ y \in X : x R y \mbox{ oder } x R z \wedge z R y \mbox{ für ein } z \in X \}$ [/mm]

Sei nun $x [mm] \in [/mm] X$ beliebig mit [mm] $m_2(x)$ [/mm] maximal. Wir müssen zeigen: [mm] $I_2(x) [/mm] = X$ also jedes Element von $X$ ist in höchstens 2 Schritten erreichbar.

Nehmen wir an, dass dies nicht so ist, also angenommen es gibt ein $y [mm] \notin I_2(x)$. [/mm] Dann gilt $y R x$ (da $xRy$ nicht gelten kann) und auch $yRx'$ für alle $x' [mm] \in I_1(x)$. [/mm] Damit ist aber [mm] $m_1(y) \geq m_1(x) [/mm] + 1$ und da [mm] $I_1(x) \subseteq I_1(y)$ [/mm] folgt: [mm] $m_2(y) [/mm] > [mm] m_2(x)$ [/mm] im Widerspruch zur Maximalität.

In Worten: es kann nicht sein, dass es so ein $y$ gibt, denn das hieße dann, dass ich von $y$ aus das $x$ erreiche und außerdem jeden Punkt, den ich von $x$ aus in einem Schritt erreiche - sonst könnte ich $y$ ja in zwei Schritten von $x$ erreichen. Aber dadurch ist die 2-Mächtigkeit von $y$ echt größer als die von $x$.

Interessant ist das, wenn man das auf ein Turnier anwendet: in jedem Turnier "Jeder gegen Jeden" gibt es mindestens eine Person, für die gilt: jeder, der von dieser Person nicht besiegt wurde, wurde von jemandem besiegt, der wiederum der Person unterlag.

Alles klar? :-) Wenn nicht, frag einfach nach.

Lars

Bezug
                
Bezug
Dominanzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 So 10.04.2005
Autor: MrElgusive

Hallo Lars!

Danke für deine Antwort zur späten Stunde, mir ist eigentlich alles soweit klar, aber selber wäre ich wohl nie darauf gekommen.

Danke euch beiden!

Grüße,
  Christian.

Bezug
                
Bezug
Dominanzrelation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 10.04.2005
Autor: Reaper

Hallo ahb mir auch mal das Beispiel angesehen und hab da doch ein paar Fragen
Du schreibst:
Nehmen wir an, dass dies nicht so ist, also angenommen es gibt ein $ y [mm] \notin I_2(x) [/mm] $. //Also es gibt ein y was man beispielsweise auch in 3 Schritten erreichen kann

Dann gilt $ y R x $ (da $ xRy $ nicht gelten kann) und auch $ yRx' $ für alle $ x' [mm] \in I_1(x) [/mm] $.
//Hier kann ich dir nicht mehr folgen. Wieso gilt dann  $ y R x $?

Damit ist aber $ [mm] m_1(y) \geq m_1(x) [/mm] + 1 $ und da $ [mm] I_1(x) \subseteq I_1(y) [/mm] $ folgt: $ [mm] m_2(y) [/mm] > [mm] m_2(x) [/mm] $ im Widerspruch zur Maximalität.

Bezug
                        
Bezug
Dominanzrelation: Definition
Status: (Antwort) fertig Status 
Datum: 18:58 So 10.04.2005
Autor: Gnometech

Hallo Reaper!

Das habe ich der Definition einer Dominanzrelation entnommen... zu jedem Paar $(x,y)$ mit $x [mm] \not= [/mm] y$ gilt immer entweder $xRy$ oder $yRx$.

In unserem Fall ist $x$ fest und das $y$ nach Annahme nicht in 2 Schritten erreichbar - insbesondere gilt nicht $xRy$. Also muß die andere Alternative gelten.

Wieder die Anschauung: bei einem Turnier "Jeder gegen Jeden" wird zu jeder Paarung ein eindeutiger Sieger ermittelt. Wenn $x$ nicht gegen $y$ gewonnen hat, dann aber $y$ gegen $x$.

Alles klar? :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de