Dominosteine - Graphen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:56 Sa 14.11.2015 | Autor: | Joseph95 |
Aufgabe | Gegeben sei eine Schachtel mit Dominosteinen, wobei jeder Stein mit zwei unterschiedlichen Augenzahlen von 1 bis 6 beschriftet ist, und jede Kombination zweier Augenzahlen genau einmal vorkommt.
(a) Wie viele Dominosteine erhält die Schachtel?
(b) Sie wollen die Dominosteine in einer Reihe hintereinander legen, so dass für je zwei aufeinanderfolgende Dominosteine die benachbarte Augenzahl gleich sind. Ist dies möglich? Ist dies möglich, falls man nur Dominosteine verwettend, die keine 6 enthalten?
Hinweis: Formulieren Sie das Problem zunächst in graphentheoretischer Sprache, und betrachten Sie die Parität der Knotengrade. |
Hey Leute,
ich habe neulich eine Aufgabe zur Graphentheorie erhalten. Bei
a) Habe ich insgesamt 15 gezählt, naja erklären würde ich es mit:
Wir haben zunächst 6 Möglichkeiten (Zahlen 1-6) und dann 5. Anzahl der Kombinationsmöglichkeiten ist 30. Da jedes Paar nur ein mal vorkommen darf, teilen wir noch durch zwei. Darauf folgt:
Die Schachten enthält 15 Dominosteine.
b) Ich gehe mal davon aus, dass es nicht möglich ist. (Habe auch eine Skizze dazu gemacht.)
Nun wollt ich es mit Graphen lösen, weshalb ich die Zahlen 1-6 als Knoten dargestellt habe und dann jeweils alle Paare durch eine Kante verbunden habe. Der Grad jedes Knoten ist der gleiche, und zwar 5 (=ungerade).
Lasse ich nun die Zahl 6 komplett weg, erhalte ich ein Pentagramm und den Knotengrad 4 (=gerade).
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:31 Sa 14.11.2015 | Autor: | M.Rex |
Hallo
> Gegeben sei eine Schachtel mit Dominosteinen, wobei jeder
> Stein mit zwei unterschiedlichen Augenzahlen von 1 bis 6
> beschriftet ist, und jede Kombination zweier Augenzahlen
> genau einmal vorkommt.
> (a) Wie viele Dominosteine erhält die Schachtel?
> (b) Sie wollen die Dominosteine in einer Reihe
> hintereinander legen, so dass für je zwei
> aufeinanderfolgende Dominosteine die benachbarte Augenzahl
> gleich sind. Ist dies möglich? Ist dies möglich, falls
> man nur Dominosteine verwettend, die keine 6 enthalten?
> Hinweis: Formulieren Sie das Problem zunächst in
> graphentheoretischer Sprache, und betrachten Sie die
> Parität der Knotengrade.
> Hey Leute,
>
> ich habe neulich eine Aufgabe zur Graphentheorie erhalten.
> Bei
>
> a) Habe ich insgesamt 15 gezählt, naja erklären würde
> ich es mit:
> Wir haben zunächst 6 Möglichkeiten (Zahlen 1-6) und dann
> 5. Anzahl der Kombinationsmöglichkeiten ist 30. Da jedes
> Paar nur ein mal vorkommen darf, teilen wir noch durch
> zwei. Darauf folgt:
> Die Schachten enthält 15 Dominosteine.
>
Das stimmt
> b) Ich gehe mal davon aus, dass es nicht möglich ist.
> (Habe auch eine Skizze dazu gemacht.)
> Nun wollt ich es mit Graphen lösen, weshalb ich die
> Zahlen 1-6 als Knoten dargestellt habe und dann jeweils
> alle Paare durch eine Kante verbunden habe. Der Grad jedes
> Knoten ist der gleiche, und zwar 5 (=ungerade).
> Lasse ich nun die Zahl 6 komplett weg, erhalte ich ein
> Pentagramm und den Knotengrad 4 (=gerade).
Das stimmt auch soweit. Begründe das ganze noch etwas ausführlicher, dann solltest du zur Lösung kommen.
Die Knotenzahl ist gar nicht so interessamt, interessanter ist die Anzahl der Kanten.
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:41 Sa 14.11.2015 | Autor: | Joseph95 |
Also ich habe die Kanten gezählt und komme auf das Ergebnis:
Bei n = 6 habe ich 15 Kanten
Bei n = 5 habe ich 10 Kanten
Ich weiß jetzt leider nicht, in wie weit mir das helfen soll :S
Vg,
Joseph95
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:51 Sa 14.11.2015 | Autor: | M.Rex |
Hallo
> Also ich habe die Kanten gezählt und komme auf das
> Ergebnis:
> Bei n = 6 habe ich 15 Kanten
> Bei n = 5 habe ich 10 Kanten
Das sieht gut aus.
>
> Ich weiß jetzt leider nicht, in wie weit mir das helfen
> soll :S
>
>
> Vg,
> Joseph95
Damit alle Steine in eine Reihe gelegt werden, musst du die Graphen "in einem Zug zeichnen können", ähnlich wie beim Haus vom Nikolaus
Bei welchem Graphen klappt das denn?
Marius
|
|
|
|