www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Doppelintegral
Doppelintegral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Sa 01.12.2007
Autor: ebarni

Aufgabe
[mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}250*cos^{4}y*cos^{3}x [/mm] + [mm] 12,5*sin^{4}y*cosy [/mm] dy dx

Hallo alle!

ich versuche verzweifelt, das Doppelintegral zu lösen.

Hier kann man doch erst Mal die Zahlenwerte rausnehmen:

250+12,5 * [mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}cos^{4}y*cos^{3}x [/mm] + [mm] sin^{4}y*cosy [/mm] dy dx

Kann man denn dann irgendwie [mm] cos^{2}+sin^{2}=1 [/mm] anwenden? Oder muss man hier wieder geschickt die passenden Additionstheoreme anwenden, um zur Lösung zu kommen?

Für eure Hilfe wäre ich sehr dankbar!

Viele Grüße, Andreas



        
Bezug
Doppelintegral: Korrektur
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 01.12.2007
Autor: Loddar

Hallo Andreas!


So darfst Du hier die Konstanten nicht vor das Integral ziehen! Denn diese Faktoren kommen ja nicht in allen Summanden vor.

Zerlege das Integral zunächst:

[mm] $$\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{250*\cos^4(y)*\cos^3(x) +12.5*\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]
$$= \ [mm] \integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{250*\cos^4(y)*\cos^3(x)\ dy dx}+\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{12.5*\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]
$$= \ [mm] 250*\integral_{-\pi}^{\pi}\cos^3(x)*\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\cos^4(y)\ dy dx}+12.5*\integral_{-\pi}^{\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\sin^4(y)*\cos(y) \ dy dx}$$ [/mm]

Das zweite (innere) Integral lässt sich mit der Subsitution $t \ := \ sin(y)$ bestimmen.

Beim ersten wirst Du wohl über mehrfache partielle Integration vorgehen müssen.


Gruß
Loddar


Bezug
                
Bezug
Doppelintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Sa 01.12.2007
Autor: ebarni

Hallo Loddar, vielen Dank für Deinen schnellen post!

So kompliziert hatte ich es mir echt nicht vorgestellt...

Ich werde es mal versuchen, so wie Du es erklärt hast.

Vielen Dank nochmal für Deine Hilfe!

Grüße nach Berlin!

Andreas



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de