www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Doppelintegral Grenzen
Doppelintegral Grenzen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral Grenzen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:59 Fr 07.02.2014
Autor: Morph007

Aufgabe
Bestimmen Sie die Fläche zwischen zwei Funktionen f(x) und g(x)

Ich habe mal eine grundsätzliche Frage zu dem Thema. Wie ich die Fläche berechne ist mir bekannt. Das äußere Integral hat die Schnittpunkte x1 und x2 der Funktionen als Integrationsgrenzen, die Integrationsvariable dx und als Integrand das innere Integral mit den Grenzen g(x) und f(x), dem Integranden y und der Integrationsvariable dy.

Meine Frage ist jetzt woher ich weiß, welche Funktion ich beim inneren Integral als obere und welche als untere Grenze einsetzen muss.
Mir ist bewusst, dass für die Fläche am Ende sowieso nur der Betrag eine Rolle spielt, aber ist es in irgendeiner Weise festgelegt welche Funktion die obere und welche die untere Grenze des inneren Integrals ist?

        
Bezug
Doppelintegral Grenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Fr 07.02.2014
Autor: fred97


> Bestimmen Sie die Fläche zwischen zwei Funktionen f(x) und
> g(x)
>  Ich habe mal eine grundsätzliche Frage zu dem Thema. Wie
> ich die Fläche berechne ist mir bekannt. Das äußere
> Integral hat die Schnittpunkte x1 und x2 der Funktionen als
> Integrationsgrenzen, die Integrationsvariable dx und als
> Integrand das innere Integral mit den Grenzen g(x) und
> f(x), dem Integranden y und der Integrationsvariable dy.
>  
> Meine Frage ist jetzt woher ich weiß, welche Funktion ich
> beim inneren Integral als obere und welche als untere
> Grenze einsetzen muss.
>  Mir ist bewusst, dass für die Fläche am Ende sowieso nur
> der Betrag eine Rolle spielt, aber ist es in irgendeiner
> Weise festgelegt welche Funktion die obere und welche die
> untere Grenze des inneren Integrals ist?


Wir setzen f und g als stetig voraus

Wenn es zwischen [mm] x_1 [/mm] und [mm] x_2 [/mm] keinen weiteren Punkt [mm] t_0 [/mm] mit [mm] f(t_0)=g(t_0) [/mm] gibt, so ist entweder

     f(x) [mm] \ge [/mm] g(x) für alle x mit [mm] x_1 \le [/mm] x [mm] \le x_2 [/mm]

oder

     f(x) [mm] \le [/mm] g(x) für alle x mit [mm] x_1 \le [/mm] x [mm] \le x_2 [/mm]

Im ersten Fall lautet das innere Integral so:

    [mm] \integral_{g(x)}^{f(x)} [/mm]

und im zweiten Fall so:

     [mm] \integral_{f(x)}^{g(x)} [/mm]


FRED

Bezug
                
Bezug
Doppelintegral Grenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 Fr 07.02.2014
Autor: Morph007

Vielen Dank, das macht Sinn!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de