www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Doppelintegral berechnen
Doppelintegral berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral berechnen: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:06 Do 28.06.2007
Autor: maxlein

Aufgabe
[mm] \integral_{0}^{2}{}\integral_{-\wurzel{1-y^{2}}}^{\wurzel{4-y^{2}}}{\bruch{1}{x^{2}+y{2}} dx} [/mm]

Meine Lösung wäre [mm] \bruch{\ln(x^{2}+y^{2})}{2x} [/mm]
Bin ich da richtig? Wenn ja, weiß ich nicht mehr weiter! Beim einsetzen der Grenzen weiß ich nicht mehr weiter wie ich das rechnen soll! Und vlt kann mir auch jemand beim 2ten Integral helfen...

mfg max

        
Bezug
Doppelintegral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Do 28.06.2007
Autor: rotschi

Du hast schon die falsche Lösung für das Integral. Ich denke es müsste

x^(-1)*arctan(x/y)

Bezug
                
Bezug
Doppelintegral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:41 Do 28.06.2007
Autor: rotschi

also ich meine nur die erste Integration bevor Du die Grenzen einsetzt

Bezug
        
Bezug
Doppelintegral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Do 28.06.2007
Autor: Dirk07

Hallo Maxlein,

am besten ist es, du machst dir erstmal einen Lageplan, d.h. du schaust, was du da genau integrierst. Mit dem inneren Integral berechnest du die Fläche, welche durch zwei Kreise begrenzt wird. Die allgemeine Kreisformel in kartesischen Koordinaten lautet:

[mm]r=\wurzel{x^2+y^2}[/mm] bzw. [mm]r^2=x^2+y^2[/mm]

Wenn du dir die Integrationsgrenzen des inneren Integrals anschaust, siehst du, dass der obere Kreis einen Radius von [mm][mm] \wurzel{4}[/mm] [mm] haben muss, während der untere Kreis (er ist unterhalb der x-Achse, da er ein Minuszeichen davor hat) einen Radius von [mm]\wurzel{1}[/mm] liefert. Quasi berechnest du mit dem interen Integral die Fläche des größeren Kreises minus die Fläche des unteren, kleineren Kreises (Die Fläche von diesem liegt unterhalb der x-Achse, daher negativ).

Mit dem äußeren Integral berechnest du das Volumen über der Fläche von 0 bis 2 (also nicht über die ganzen Kreise, sondern nur über einen Halbkreis)

Damit die Rechnung nicht so umfangreich wird, empfiehlt es sich hier, auf Polarkoordinaten umzuwechseln, du setzt für [mm]x^2+y^2=r^2[/mm]. Jetzt musst du nur noch bedenken, dass du sich in Polarkoordinaten ein Stück der Teilfläche mit [mm]dA=dr\cdot{}rd\phi[/mm] berechnet, das heißt, im inneren Integral musst du noch ein "r" hineinmultiplizieren. Mehr zu Polarkoordinaten findest du auf der Wikipedia Seite unter "Polarkoordinaten".

Jetzt musst du noch an den Integrationsgrenzen für das innere Integral arbeiten und sie den Polarkoordinaten anpassen. Entweder zerlegst du das Integral in zwei Integrale für den großen Kreis und ziehst davon das Integral des inneren Kreises ab (dann lässt du das Minuszeichen weg, sodass der Kreis nunmehr auch positiven Flächeninhalt hat) oder du schreibst das jetzige Integral um, indem du die Grenzen nach "r" auflöst. Ich wähle erste Methode, da diese doch um einiges einfacher ist. Zuerst betrachtest du den äußeren Kreis:

[mm]x=\wurzel{4-y^2}[/mm]
[mm]x^2=4-y^2[/mm]
[mm]x^2+y^2=4[/mm]

Der Radius ist hierbei 2. (da [mm] r^2=4). [/mm] Also ist deine untere Integrationsgrenze 0, die obere somit 2 (=Radius) für den äußeren Kreis. Jetzt machst du das gleiche für den inneren Kreis:

[mm]x=\wurzel{1-y^2}[/mm]
[mm]x^2=1-y^2[/mm]
[mm]x^2+y^2=1[/mm]

Wie gesagt, das minus zeichen ziehen wir quasi aus dem Integral heraus. Somit hätten wir für den inneren Kreis die Integrationsgrenzen 0 und 1.

Jetzt musst du noch das äußere Integral betrachten. im kartesischen Koordinatensystem sammelst du von 0 bis 2 auf (links nach rechts, ein Halbkreis), in Polarkoordinaten sammelst du Volumeneinheiten von 0° bis [mm] \bruch{\pi}{2} [/mm] auf, also bis 90° - Halbkreis. Insgesamt sähe dann das Integral wie folgt aus:

[mm]\integral_{0}^{\bruch{\pi}{2}}{(\integral_{0}^{2}{\bruch{1}{r}dr}-\integral_{0}^{1}{\bruch{1}{r}dr})}d\phi}}[/mm]

(das [mm] r^2 [/mm] verschwindet, da hier, wie oben beschrieben nochmal mit r multipliziert werden muss).

Hier das ganze auch nochmal graphisch:

[Dateianhang nicht öffentlich]

Da ich mir nicht ganz sicher bin, mit meiner Lösung (vorallem ob das legitim ist, das Integral auseinanderzuziehen), lasse ich die Frage auf "unbeantwortet", würde mich freuen, wenn meine Rechnung/Gedankengang nochmal jemand korrekturlesen kann.

Lieben Gruß,
Dirk

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Doppelintegral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Do 28.06.2007
Autor: maxlein

Wow, danke für diese ausführliche Antwort!
Da versteh ich das Ganze gleich viel besser :-)

mfg max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de