www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Doppelintegrale II
Doppelintegrale II < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegrale II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:28 So 18.08.2013
Autor: Mopsi

Guten Abend :)


Folgende Doppelintegrale konnte ich lösen (letzteres mit Polarkoordinaten):

1. [mm] \int_{G}^{} exp(- \frac{y}{x^4}) d(x,y), G= \{(x,y)\} \in \IR^2: 0 \leq y \leq x^4, -1 \leq x \leq 1 \} [/mm]
2. [mm] \int_{G}^{} (x^3 +xy^2) d(x,y), G = \{(x,y)\} \in \IR^2: x^2 + y^2 \leq 1, x \geq 0 \} [/mm]

Nun bereitet mir dieses Probleme:

[mm] \int_{G}^{} \frac{e^{x^2+y^2+z^2} }{\sqrt{x^2+y^2+z^2}} \textrm{ }d(x,y,z), G = \{(x,y,z)\} \in \IR^3: 1 \leq x^2+y^2+z^2 \leq 4, z \geq 0 \} [/mm]


Hier liegt nun ein dreidimensionales Gebiet vor. Aber wie sieht es überhaupt aus? Hat es eine bestimmte Form? Ich kann mir das überhaupt nicht vorstellen :(  Wie macht ihr das?

Bei einer Kreisfläche lohnt es sich ja das ganze in Polarkoordinaten umzuwandeln.
Lohnt es sich hier auch?

Aber wie sehen Polarkoordinaten im dreidimensionalen überhaupt aus?
Im zweidimensionalen gilt ja: [mm]x = r * cos( \varphi), y = r * sin( \varphi), r^2 = x^2 + y^2[/mm]
Wie sieht es im dreidimensionalen aus? Könnt ihr mir dazu vielleicht einen Link im Internet empfehlen?

Erstmal bis hierhin.

Danke :)

Mopsi

        
Bezug
Doppelintegrale II: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 So 18.08.2013
Autor: fred97

Hallo
in drei d spricht man von Kugelkoordinaten, die kannst du etwa in wiki nachlesen, dann muss ich  sie nicht hinschreiben. Es sind die Koordinaten, die man auch auf der Erde benutzt (Längen und Breitengrad +Radius)
Gruss leduart

Bezug
                
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 So 18.08.2013
Autor: Mopsi

Vielen Dank, Fred :)

Bezug
        
Bezug
Doppelintegrale II: Gebiet G
Status: (Antwort) fertig Status 
Datum: 03:26 So 18.08.2013
Autor: Al-Chwarizmi


>  G = [mm] $\{\ (x,y,z) \in \IR^3:\ 1 \leq x^2+y^2+z^2 \leq 4\ ,\ z \geq 0\ \} [/mm] $
>  
> Hier liegt nun ein dreidimensionales Gebiet vor. Aber wie
> sieht es überhaupt aus? Hat es eine bestimmte Form? Ich
> kann mir das überhaupt nicht vorstellen :(  Wie macht ihr
> das?


Hallo Mopsi,

Jede Gleichung der Form  [mm] x^2+y^2+z^2=r^2 [/mm] (mit r>0)
beschreibt eine Kugelfläche mit dem Kugelmittelpunkt
O(0|0|0) und dem Radius r.
Um G zu erhalten, bildet man also zunächst die Vereini-
gungsmenge aller solchen Kugelflächen, wobei  [mm] r\in[1...2] [/mm] .
Damit haben wir eine Hohlkugel mit dem Außenradius 2
und dem Innenradius 1.
Wegen der zusätzlichen Bedingung [mm] z\geq [/mm] 0  nehmen wir
aber von dieser Hohlkugel nur diejenige Hälfte, in welcher
diese Ungleichung erfüllt ist. G ist also eine Halbkugel-
Schale.

LG ,  Al-Chw.


Bezug
                
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 So 18.08.2013
Autor: Mopsi

Hallo Al-Chwarizmi :)

Das hat du gut erklärt, das konnte ich alles nachvollziehen.

Dankeschön :)

Bezug
        
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 So 18.08.2013
Autor: Thomas_Aut

Hallo Mopsi,


In deinem ersten Beitrag zu Integralen (und auch in diesem) fragst du immer nach einer Veranschaulichung (Vorstellungsmöglichkeit) der Gebiete.
Prinzipiell sind die Gebiete vom Aufgabensteller so gewählt, dass man sie sich "möglichst einfach" vorstellen kann - auch in deinem Fall werden ganz klassische Gleichungen herangezogen.
1) [mm] x^{2}+y^{2} [/mm] = [mm] r^2. [/mm] - der du ansehen solltest dass sie etwas mit einem Kreis zu tun hat :)
2) [mm] x^2+y^2+z^2 [/mm] = [mm] r^2 [/mm] - der du ansehen solltest dass sie etwas mit einer Kugel zu tun hat.

Nun sind deine Gleichungen etwas verunstaltet und zu Ungleichungen geworden , welche dennoch etwas mit Kreis und Kugel zu tun haben.

Al-Chwarizmi hat nun in beiden Fällen beschrieben inwiefern dadurch Änderungen eintreten - Wie etwa G ist eine Halbkugelschale.
Nachdem in dem Forum viele begnadete Mathematiker aktiv sind , die auf den ersten Blick einer solchen Ungleichung einen Namen ,wie in diesem Fall Halbkugelschale ,verpassen können (ohne lange nachzudenken) , stellt sich für dich die Frage wie du das auch machen kannst.

Übung! - Nimm dir einige solche Ungleichungen her, stelle zusätzliche Bedingungen oder triff andere Einschränkungen und untersuche die resultierenden Figuren... du wirst erkennen , dass du recht rasch Kugelschalen, Kreisscheiben etc. erkennst.

Es wird jedoch immer Mengen geben denen du kaum etwas vorstellbares zuordnen kannst selbst wenn du sie genauer untersuchst. Also die klassischen Varianten ersiehst du durch Übung relativ rasch, manche benötigen einen höheren Zeitaufwand und manche wirst du dir schwer bis gar nicht vorstellbar machen.


Gruß Thomas

Bezug
                
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 So 18.08.2013
Autor: Mopsi

Hey Thomas :)

Vielen Dank für deine Antwort, ich werde jetzt viel üben und bei Problemen fragen :)

Bezug
        
Bezug
Doppelintegrale II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 18.08.2013
Autor: Mopsi

Und was ist mit Zylinderkoordinaten? Wann genau verwende ich diese?

Wenn ich das nun in Kugelkoordinaten umschreibe erhalte ich folgendes Integral:

[mm] \int_{G}^{}{\frac{e^r^2}{\sqrt{r^2}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r^3} \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr}[/mm]

Aber wie mache ich das mit der Reihenfolge? Also ich weißt jetzt nicht, was das innere Integral sein soll..

Erstmal die Grenzen:

Für r gilt: [mm]1 \leq r \leq 2[/mm]
Für [mm]%20%5Cvarphi[/mm] gilt: [mm]0 \leq \varphi \leq 2 \pi[/mm]
Für [mm]0 \leq \theta \leq \frac{\pi}{2}[/mm]

Ist es vielleicht sogar egal welche Reihenfolge ich nehme, da die Grenzen von keinen Variablen abhängen?
 

Bezug
                
Bezug
Doppelintegrale II: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 So 18.08.2013
Autor: MathePower

Hallo Mopsi,

> Und was ist mit Zylinderkoordinaten? Wann genau verwende
> ich diese?
>  
> Wenn ich das nun in Kugelkoordinaten umschreibe erhalte ich
> folgendes Integral:
>  
> [mm]\int_{G}^{}{\frac{e^r^2}{\sqrt{r^2}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r^3} \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr}[/mm]
>  


Das muss doch so lauten:

[mm]\int_{G}^{}{\frac{e^r^2}{\sqrt{r^2}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{\blue{\bruch{e^{r^2}}{r}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*\blue{r} \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr}[/mm]


> Aber wie mache ich das mit der Reihenfolge? Also ich weißt
> jetzt nicht, was das innere Integral sein soll..
>  
> Erstmal die Grenzen:
>  
> Für r gilt: [mm]1 \leq r \leq 2[/mm]
>  Für [mm]%20%5Cvarphi[/mm] gilt: [mm]0 \leq \varphi \leq 2 \pi[/mm]
>  
> Für [mm]0 \leq \theta \leq \frac{\pi}{2}[/mm]
>  
> Ist es vielleicht sogar egal welche Reihenfolge ich nehme,
> da die Grenzen von keinen Variablen abhängen?
>  


Genau so ist es.


Gruss
MathePower  

Bezug
                        
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 So 18.08.2013
Autor: Mopsi

Hey MathePower :)

> Hallo Mopsi,

>

> > Und was ist mit Zylinderkoordinaten? Wann genau verwende
> > ich diese?
> >
> > Wenn ich das nun in Kugelkoordinaten umschreibe erhalte ich
> > folgendes Integral:
> >
> > [mm]\int_{G}^{}{\frac{e^r^2}{\sqrt{r^2}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*r^3} \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr}[/mm]

>

> >

>
>

> Das muss doch so lauten:

>

> [mm]\int_{G}^{}{\frac{e^r^2}{\sqrt{r^2}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{\blue{\bruch{e^{r^2}}{r}} \textrm{ }r^2 \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr} = \int_{G}^{}{e^{r^2}*\blue{r} \textrm{ } sin \theta \textrm{ } d \varphi \textrm{ } d \theta dr}[/mm]

Genau, habe es jetzt auch so und die richtige Lösung [mm]\pi e^4 - \pi e[/mm] erhalten :)

Dankeschön :)

Bezug
        
Bezug
Doppelintegrale II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 So 18.08.2013
Autor: Mopsi

Eine Frage habe ich noch.

Dies ist das Integral:

[mm] \int_{G}^{} y^2cos(2x^2-x^4) d(x,y), G= \{(x,y)\} \in \IR^2: x \leq y \leq \sqrt[3]{x}, 0 \leq x \leq 1 \}[/mm]

Wie sieht das Gebiet aus?
Also da für x gilt: [mm] 0 \leq x \leq 1 \[/mm] könnte es eine Kreisscheibe mit Radius 1 sein, oder?
Aber was sagt mir das y? Das ist jetzt in Abhängigkeit von x und hat da so eine eklige Wurzel...

Ich habe versucht das Integral in Polarkoordinaten umzuschreiben, aber ich kann die Funktion nicht gescheit umformen..
Für die Grenzen müsste dann ja gelten:
[mm] 0 \leq r \leq 1 \[/mm]
[mm] 0 \leq \varphi \leq 2\pi \[/mm]

Ist es vielleicht sogar gedacht, dass man kartesische Koordinaten bei dieser Aufgabe verwendet?

Bezug
                
Bezug
Doppelintegrale II: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 So 18.08.2013
Autor: Al-Chwarizmi


> Eine Frage habe ich noch.
>  
> Dies ist das Integral:
>  
> [mm]\int_{G}^{} y^2cos(2x^2-x^4) d(x,y), G= \{(x,y)\} \in \IR^2: x \leq y \leq \sqrt[3]{x}, 0 \leq x \leq 1 \}[/mm]
>  
> Wie sieht das Gebiet aus?
>  Also da für x gilt: [mm]0 \leq x \leq 1 \[/mm] könnte es eine
> Kreisscheibe mit Radius 1 sein, oder?
>  Aber was sagt mir das y? Das ist jetzt in Abhängigkeit
> von x und hat da so eine eklige Wurzel...
>  
> Ich habe versucht das Integral in Polarkoordinaten
> umzuschreiben, aber ich kann die Funktion nicht gescheit
> umformen..
>  Für die Grenzen müsste dann ja gelten:
>  [mm]0 \leq r \leq 1 \[/mm]
>  [mm]0 \leq \varphi \leq 2\pi \[/mm]
>  
> Ist es vielleicht sogar gedacht, dass man kartesische
> Koordinaten bei dieser Aufgabe verwendet?


In diesem Fall:  keine Spur von Kreisgleichung und
Kreisscheiben !

Die Ungleichungskette  [mm]0 \leq x \leq 1 \[/mm]  besagt nur
einmal, dass man sich auf dieses Intervall der x-Werte
beschränken kann.

Die für y vorliegende Ungleichungskette  x [mm] \leq [/mm] y [mm] \leq \sqrt[3]{x} [/mm]
(in Abhängigkeit von x) besagt, dass für jeden gewählten
x-Wert (im angegebenen Intervall) sich die zugehörigen
y-Werte im Intervall  [x ... [mm] \sqrt[3]{x}] [/mm]  bewegen sollen.
Dies ist insgesamt eine exakte Beschreibung des Integrations-
gebietes, welche sich sofort in eine Integrationsanweisung
in rechtwinkligen Koordinaten umsetzen lässt:

      [mm] $\integral_{x=0}^{1}\ \left(\ \integral_{y=x}^{\sqrt[3]{x}}\ ......\ dy\,\right)\ [/mm] dx$

Deine Fragen scheinen mir zu zeigen, dass du als
Studentin der Naturwissenschaft im Grundstudium
offenbar gewisse nicht ganz geringe Defizite in
Bereichen der Mathematik hast, welche am
Gymnasium bestimmt ziemlich ausführlich
behandelt wurden ...

LG ,   Al-Chw.




Bezug
                        
Bezug
Doppelintegrale II: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 So 18.08.2013
Autor: Mopsi

Hey Al-Chwarizmi :)

Vielen Dank, nun habe ich das Integral mit kartesischen Koordinaten gelöst und erhalte das richtige Ergebnis [mm] \frac{sin(1)}{12}[/mm].

Ja, ich habe Defizite in gewissen Bereichen, aber deswegen bin ich doch gerade hier :-)
Ich kann mich ja nicht aufgeben... :(

Mopsi




 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de