www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Doppelsumme vereinfachen
Doppelsumme vereinfachen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelsumme vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 30.07.2014
Autor: julsch

Hallo zusammen,

ich versuche momentan eine Doppelsumme zu vereinfachen. Ich habe eine Summe aus Kovarianzen [mm] Cov(z_{j},z_{k})=\gamma_{|j-k|}, [/mm] welche ich gerne vereinfachen möchte. Ich habe schon gezeigt, dass
[mm] \summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j} [/mm] = [mm] \summe_{j=1}^{t-1} [/mm] (t-j) [mm] \gamma_{j}, [/mm] wobei [mm] \gamma_{j}=Cov(z_{s},z_{s+j}) [/mm] ist. Dadurch, dass meine [mm] z_{t} [/mm] stationär sind, weiß ich, dass die Kovarianzen nur von dem Abstand j abhängen.
Ich möchte sowas jetzt auch für [mm] \summe_{i=1}^{t} \summe_{j=t+1}^{N} \gamma_{j-i} [/mm] zeigen. Ich habe mir schon für verschiedene t und N die Summe aufgeschrieben, komme jedoch nicht zu einem Ergebnis. Lässt sich diese Summe überhaupt so vereinfachen, dass ich nur noch eine Summe dort stehen habe bzw. meine Kovarianz nur noch vom Abstand abhängt, d.h. anstatt [mm] \gamma_{|j-i|} [/mm] nur noch [mm] \gamma_{j} [/mm] in der Summe vorkommt?

Ich hoffe, dass ich verständliche machen konnte, worum es geht.

Liebe Grüße,

julsch

        
Bezug
Doppelsumme vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 30.07.2014
Autor: Marcel

Hallo julsch,

> Hallo zusammen,
>  
> ich versuche momentan eine Doppelsumme zu vereinfachen. Ich
> habe eine Summe aus Kovarianzen
> [mm]Cov(z_{j},z_{k})=\gamma_{|j-k|},[/mm] welche ich gerne
> vereinfachen möchte. Ich habe schon gezeigt, dass
>  [mm]\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}[/mm] = [mm]\summe_{j=1}^{t-1}[/mm] (t-j) [mm]\gamma_{j},[/mm]

ich zeig' Dir einfach mal, wie man das "direkt sehen" kann:
Wir bilden eine Matrix, nach rechts tragen wir die [mm] $j=1\,...,t-1$ [/mm] ab, und nach
unten schreiben wir die Summanden der zugehörigen inneren Summe. Aus
*Zugehörigkeitsgründen* (das siehst Du später sicher selbst, was ich damit
meine) werde ich auch "additive Nullen" ergänzen.

Also genauer: Wir schreiben eine [mm] $(t-1)\,$ $\times$ $(t-1)\,$ [/mm] Matrix [mm] $A=(a_{j,k})$ [/mm] wie folgt

    [mm] $A=\pmat{\gamma_1 & \gamma_1 & \gamma_1 & ... & \gamma_1 & \gamma_1 & \gamma_1 \\ \gamma_2 & \gamma_2& \gamma_2& ...& $\gamma_2 & \gamma_2 & 0\\\gamma_3 & \gamma_3& \gamma_3& ...& \gamma_3 & 0 & 0 \\ ... \\\gamma_{t-2} & \gamma_{t-2} & 0 & ... & 0 & 0 & 0\\ \gamma_{t-1} & 0 & 0 & ... & 0 & 0 & 0}$ [/mm]

Wenn Du willst, kannst Du Dir mal genau die [mm] $a_{j,k}$ [/mm] definieren. Aber das ist
nicht so das Wichtige. Das, was Du Dir klarmachen solltest, ist:

    [mm] $\bullet$ [/mm] Summe über die erste Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{1}+1}^t \gamma_{k-\red{1}}$ [/mm]

    [mm] $\bullet$ [/mm] Summe über die zweite Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{2}+1}^t \gamma_{k-\red{2}}$ [/mm] (eigentlich ist es die letzte Summe +0, aber additive Nullen ändern nix am Wert!)

    [mm] $\bullet$ [/mm] Summe über die dritte Spalte von [mm] $A\,$ [/mm] ist [mm] $\sum_{k=\red{3}+1}^t \gamma_{k-\red{3}}$ [/mm] (eigentlich ist es die letzte Summe +0+0, aber additive Nullen ändern nix am Wert!)


Die Summe

    [mm] $\summe_{j=1}^{t-1} \summe_{k=j+1}^{t} \gamma_{k-j}$ [/mm]

ist also die Summe über alle Spaltensummen von [mm] $A\,.$ [/mm] Das ist (wegen
Kommutativität und Assoziativität der Addition) identisch mit der Summe
aller Matrixeinträge der Matrix [mm] $A\,.$ [/mm] Die Summe über alle Matrixeinträge
der Matrix [mm] $A\,$ [/mm] kann man auch "mit Zeilensummen" berechnen.
Die erste Zeilensumme ist

    [mm] $(t-1)*\gamma_1\,,$ [/mm]

die zweite ist

    [mm] $(t-2)*\gamma_2$ [/mm]

etc. pp.. So gelangt man schließlich zu Deinem Term

    [mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j\,.$ [/mm]

Das kann man übrigens noch umschreiben:

    [mm] $\sum_{j=1}^{t-1} (t-j)*\gamma_j=\left(\sum_{j=1}^{t-1} (t*\gamma_j)\right)-\sum_{j=1}^{t-1}(j*\gamma_j)=\left(t*\sum_{j=1}^{t-1}\gamma_j\right)-\sum_{j=1}^{t-1}(j*\gamma_j)\,.$ [/mm]

Jedenfalls: Schau' mal, ob Du nicht im Prinzip analog zu oben vorgehen
kannst. Gibt's eigentlich irgendwelche Nebenbedingungen an [mm] $N\,$? [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Doppelsumme vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 30.07.2014
Autor: Marcel

Hallo julsch,

das [mm] $t\,$ [/mm] ist ja fest. Ich erstelle für

    [mm] $\sum_{i=1}^t\sum_{j=t+1}^N \gamma_{j-i}$ [/mm]

eine [mm] $t\,$ $\times$ [/mm] $(N-1)$-Matrix. Aus Gründen der Demonstration wähle ich
[mm] $t=5\,,$ [/mm] ich denke, Du kannst das dann nachher allgemeiner machen.

Also:

    [mm] $\pmat{ 0 & 0 & 0 & 0 & \gamma_1 \\ 0 & 0 & 0 & \gamma_2 & \gamma_2\\ 0 & 0 & \gamma_3 & \gamma_3 & \gamma_3\\0 & \gamma_4 & \gamma_4 & \gamma_4 & \gamma_4\\\gamma_5 & \gamma_5 & \gamma_5 & \gamma_5 & \gamma_5\\\gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 & \gamma_6 \\ ... & ... & ... & ... & ...\\ \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5} & \gamma_{N-5}\\ \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & \gamma_{N-4} & 0\\ \gamma_{N-3} & \gamma_{N-3} & \gamma_{N-3} & 0 & 0\\\\ \gamma_{N-2} & \gamma_{N-2} & 0 & 0 & 0\\ \gamma_{N-1} & 0 & 0 & 0 & 0}$ [/mm]

Die Summe aller Spaltensummen ist Deine gesuchte Summe. Du siehst mit
Zeilensummen:
Sie ist identisch mit

    [mm] $\gamma_1+2\gamma_2+3\gamma_3+4\gamma_4+5*(\gamma_5+\gamma_6+...+\gamma_{N-5})+4\gamma_{N-4}+3\gamma_{N-3}+2\gamma_{N-2}+\gamma_{N-1}=\sum_{k=1}^{t-1} \{k*(\gamma_k+\gamma_{N-k}\}+t*\sum_{k=t}^{N-t}\gamma_k\,,$ [/mm]

oder Du kannst das auch schreiben

    [mm] $=\left(\sum_{k=1}^{t-1} (k*\gamma_k)\right)+\left(\sum_{k=t}^{N-t} (t*\gamma_k)\right)+\sum_{k=N-t+1}^{N-1} [/mm] ( [mm] (N-k)\gamma_k)$ [/mm]

Ob das das ist, was Du willst und gebrauchen kannst, weiß ich nun nicht.
Falls ja: Überprüfe das bitte auch nochmal (für verschiedene [mm] $t\,,$ [/mm] insbesondere
auch für spezielle [mm] $t\,$ [/mm] wie [mm] $t=1\,$ [/mm] bzw. [mm] $t=N-1\,$). [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de