www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Dreieck-Verhältnis
Dreieck-Verhältnis < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 28.02.2009
Autor: Mandy_90

Aufgabe
Gegeben sei das Dreieck ABC mit den Seiten a,b und [mm] c.\alpha [/mm] sei der Innenwinkel bei A.Zeigen Sie,dass die Winkelhalbierende des Winkels [mm] \alpha [/mm] die Seite [mm] a=\overline{BC} [/mm] im Verhältnis c:b teilt.
Hinweis: Die Winkelhalbierende [mm] \overrightarrow{AT} [/mm] kann mithilfe der Einheitsvektoren [mm] \bruch{1}{b}*\vec{b} [/mm] und  [mm] \bruch{1}{c}*\vec{c} [/mm] dargestellt werden.

Hallo zusammen^^

[Dateianhang nicht öffentlich]

Ich hab versucht diese Aufgabe zu lösen,komme jedoch nicht mehr weiter.Ich hoffe ihr könnt mir helfen.

Zunächst bin ich mit einer geschlossenen Vektorkette an die Sache rangegangen:

[mm] \overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0} [/mm]

Und dann hab ich diese Vektoren als Linearkombination der Vektoren [mm] \vec{a},\vec{b} [/mm] und [mm] \vec{c} [/mm] ausgedrückt.


[mm] \overrightarrow{AT}=\bruch{1}{b}*\vec{b}+ \bruch{1}{c}*\vec{c} [/mm]
[mm] \overrightarrow{TB}=-\alpha*\vec{a} [/mm]
[mm] \overrightarrow{BA}=\vec{c}=\vec{b}+\vec{a} [/mm]

Jetzt kann ich doch schreiben:

[mm] \bruch{\vec{b}}{b}+\bruch{\vec{b}+\vec{a}}{c}-\alpha*\vec{a}+\vec{b}+\vec{a}=\vec{0} [/mm]

Und klammere [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aus:

[mm] \vec{a}*(\bruch{1}{c}-\alpha+1)+\vec{b}*(\bruch{1}{b}+\bruch{1}{c}+1)=\vec{0} [/mm]

Dann hab ich folgendes Gleichungssystem:

1.) [mm] \bruch{1}{c}-\alpha+1=0 [/mm]

2.) [mm] \bruch{1}{b}+\bruch{1}{c}+1=0 [/mm]

Das System kann man aber nicht lösen,weiß jemand wo mein Fehler liegt?

Vielen Dank

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Dreieck-Verhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Sa 28.02.2009
Autor: abakus


> Gegeben sei das Dreieck ABC mit den Seiten a,b und [mm]c.\alpha[/mm]
> sei der Innenwinkel bei A.Zeigen Sie,dass die
> Winkelhalbierende des Winkels [mm]\alpha[/mm] die Seite
> [mm]a=\overline{BC}[/mm] im Verhältnis c:b teilt.
>  Hinweis: Die Winkelhalbierende [mm]\overrightarrow{AT}[/mm] kann
> mithilfe der Einheitsvektoren [mm]\bruch{1}{b}*\vec{b}[/mm] und  
> [mm]\bruch{1}{c}*\vec{c}[/mm] dargestellt werden.
>  Hallo zusammen^^
>  
> [Dateianhang nicht öffentlich]
>  
> Ich hab versucht diese Aufgabe zu lösen,komme jedoch nicht
> mehr weiter.Ich hoffe ihr könnt mir helfen.
>  
> Zunächst bin ich mit einer geschlossenen Vektorkette an die
> Sache rangegangen:
>  
> [mm]\overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0}[/mm]
>  
> Und dann hab ich diese Vektoren als Linearkombination der
> Vektoren [mm]\vec{a},\vec{b}[/mm] und [mm]\vec{c}[/mm] ausgedrückt.
>  
>
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}[/mm]

Das ist Unfug. Du behauptest damit, dass [mm] \overrightarrow{AT} [/mm] den Betrag 1 hat.
Gruß Abakus

>  [mm]\overrightarrow{TB}=-\alpha*\vec{a}[/mm]


>  [mm]\overrightarrow{BA}=\vec{c}=\vec{b}+\vec{a}[/mm]
>  
> Jetzt kann ich doch schreiben:
>  
> [mm]\bruch{\vec{b}}{b}+\bruch{\vec{b}+\vec{a}}{c}-\alpha*\vec{a}+\vec{b}+\vec{a}=\vec{0}[/mm]
>  
> Und klammere [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] aus:
>  
> [mm]\vec{a}*(\bruch{1}{c}-\alpha+1)+\vec{b}*(\bruch{1}{b}+\bruch{1}{c}+1)=\vec{0}[/mm]
>  
> Dann hab ich folgendes Gleichungssystem:
>  
> 1.) [mm]\bruch{1}{c}-\alpha+1=0[/mm]
>  
> 2.) [mm]\bruch{1}{b}+\bruch{1}{c}+1=0[/mm]
>  
> Das System kann man aber nicht lösen,weiß jemand wo mein
> Fehler liegt?
>  
> Vielen Dank
>  
> lg


Bezug
                
Bezug
Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 28.02.2009
Autor: Mandy_90

Das war nur ein Tippfehler,ich hab vergessen noch [mm] +\bruch{1}{c}*\vec{c} [/mm] dazu zu schreiben.Ich hab mit [mm] \overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c} [/mm] weitergerechnet,mein Fehler muss also ncoh weiter in der Rechnung liegen,ich weiß aber nicht wo ?

lg

Bezug
                        
Bezug
Dreieck-Verhältnis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 28.02.2009
Autor: abakus


> Das war nur ein Tippfehler,ich hab vergessen noch
> [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> weitergerechnet,mein Fehler muss also ncoh weiter in der
> Rechnung liegen,ich weiß aber nicht wo ?
>  
> lg

[mm] \overrightarrow{AT} [/mm] ist nicht die Summe von zwei Einheitsvektoren, sondern ein Vielfaches dieser Summe.

Bezug
                                
Bezug
Dreieck-Verhältnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 11.05.2009
Autor: Mandy_90


> > Das war nur ein Tippfehler,ich hab vergessen noch
> > [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> >
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> > weitergerechnet,mein Fehler muss also ncoh weiter in der
> > Rechnung liegen,ich weiß aber nicht wo ?
>  >  
> > lg
> [mm]\overrightarrow{AT}[/mm] ist nicht die Summe von zwei
> Einheitsvektoren, sondern ein Vielfaches dieser Summe.

Ok,vielen Dank.

Das heißt, [mm] \overrightarrow{AT}=\alpha(\bruch{1}{b}\cdot{}\vec{b}+\bruch{1}{c}\cdot{}\vec{c}) [/mm]

[mm] \overrightarrow{TB}=-\beta*\vec{a} [/mm]

[mm] \overrightarrow{BA}=-\vec{c} [/mm]

Jetzt kann ich doch schreiben;

[mm] \overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0} [/mm]

Das heißt:

[mm] \alpha\bruch{1}{b}\cdot{}\vec{b}+\alpha\bruch{1}{c}\cdot{}\vec{c}-\beta*\vec{a}-\vec{c}=0 [/mm]

Aber irgendwie ergibt das keinen Sinn,weil ich das entstehende LGS nicht lösen kann.Da kommt für [mm] \beta=0 [/mm] raus.Das kann ja nicht sein.
Weiß jemand,was ich hier falsch mache?

Vielen Dank

lg

Bezug
                                        
Bezug
Dreieck-Verhältnis: Tipp
Status: (Antwort) fertig Status 
Datum: 18:47 So 17.05.2009
Autor: informix

Hallo Mandy_90,

> > > Das war nur ein Tippfehler,ich hab vergessen noch
> > > [mm]+\bruch{1}{c}*\vec{c}[/mm] dazu zu schreiben.Ich hab mit
> > >
> >
> [mm]\overrightarrow{AT}=\bruch{1}{b}*\vec{b}+\bruch{1}{c}*\vec{c}[/mm]
> > > weitergerechnet,mein Fehler muss also ncoh weiter in der
> > > Rechnung liegen,ich weiß aber nicht wo ?
>  >  >  
> > > lg
> > [mm]\overrightarrow{AT}[/mm] ist nicht die Summe von zwei
> > Einheitsvektoren, sondern ein Vielfaches dieser Summe.
>
> Ok,vielen Dank.
>  
> Das heißt,
> [mm]\overrightarrow{AT}=\alpha(\bruch{1}{b}\cdot{}\vec{b}+\bruch{1}{c}\cdot{}\vec{c})[/mm]
>  
> [mm]\overrightarrow{TB}=-\beta*\vec{a}[/mm]
>  
> [mm]\overrightarrow{BA}=-\vec{c}[/mm]
>  
> Jetzt kann ich doch schreiben;
>  
> [mm]\overrightarrow{AT}+\overrightarrow{TB}+\overrightarrow{BA}=\vec{0}[/mm]
>  
> Das heißt:
>  
> [mm]\alpha\bruch{1}{b}\cdot{}\vec{b}+\alpha\bruch{1}{c}\cdot{}\vec{c}-\beta*\vec{a}-\vec{c}=0[/mm]
>  
> Aber irgendwie ergibt das keinen Sinn,weil ich das
> entstehende LGS nicht lösen kann.Da kommt für [mm]\beta=0[/mm]
> raus.Das kann ja nicht sein.
>  Weiß jemand,was ich hier falsch mache?
>  

Du sollst doch nur ein Verhältnis von Streckenlängen nachweisen:
[mm] \bruch{|\overrightarrow{TB}|}{|\overrightarrow{TC}|}=\bruch{c}{b} [/mm]

Schau dir also mal die beiden Längen an und versuche, das Verhältnis nachzuweisen.

Übrigens: [mm] \alpha [/mm] ist der Winkel bei A, benutze also stattdessen $r_$ oder [mm] \lambda [/mm] als reelle Variable.


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de