www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Dreieck
Dreieck < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Seitenberechnung
Status: (Frage) beantwortet Status 
Datum: 08:47 Di 28.04.2009
Autor: lisa11

Aufgabe
Von einem Dreick kannt man a= 45 und b = 50. Weiter soll der Winkel beta um 10 grösser sein als der Winkel alpha. Berechnen Sie c.

Ich würde das mit dem Cosinussatz lösen mit

c = [mm] \wurzel {a^2 + b^2 -2*a*b* cos\gamma } [/mm]

mir ist aber nicht so klar wie ich [mm] \gamma [/mm] berechnen kann

ich würde das mit [mm] \gamma [/mm] = 180 - 10 = 170 machen und davon dann den
cos rechen?

        
Bezug
Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:01 Di 28.04.2009
Autor: angela.h.b.


> Von einem Dreick kannt man a= 45 und b = 50. Weiter soll
> der Winkel beta um 10 grösser sein als der Winkel alpha.
> Berechnen Sie c.
>  Ich würde das mit dem Cosinussatz lösen mit
>
> c = [mm]\wurzel {a^2 + b^2 -2*a*b* cos\gamma }[/mm]
>  
> mir ist aber nicht so klar wie ich [mm]\gamma[/mm] berechnen kann
>  
> ich würde das mit [mm]\gamma[/mm] = 180 - 10 = 170 machen und davon
> dann den
> cos rechen?

Hallo,

das wäre mit Sicherheit nicht richtig, da die Winkelsumme im Dreieck ja 180° ergeben muß.
Du kannst ja nicht einfach [mm] \alpha=0° [/mm] setzen.

Gruß v. Angela


Bezug
        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Di 28.04.2009
Autor: weduwe


> Von einem Dreick kannt man a= 45 und b = 50. Weiter soll
> der Winkel beta um 10 grösser sein als der Winkel alpha.
> Berechnen Sie c.
>  Ich würde das mit dem Cosinussatz lösen mit
>
> c = [mm]\wurzel {a^2 + b^2 -2*a*b* cos\gamma }[/mm]
>  
> mir ist aber nicht so klar wie ich [mm]\gamma[/mm] berechnen kann
>  
> ich würde das mit [mm]\gamma[/mm] = 180 - 10 = 170 machen und davon
> dann den
> cos rechen?

ich würde zunächst den sinussatz verwenden :-)

[mm]a:b = sin\alpha:sin(\alpha+10)[/mm]


Bezug
                
Bezug
Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:07 Di 28.04.2009
Autor: lisa11

damit rechne ich dann das alpha aus und c mit dem cosinussatz?



Bezug
                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Di 28.04.2009
Autor: statler

Hi!

> damit rechne ich dann das alpha aus und c mit dem
> cosinussatz?

Genau! Für die Berechnung des [mm] \alpha [/mm] wirst du wohl ein Näherungsverfahren brauchen, Newton z. B.

Gruß
Dieter

Bezug
                                
Bezug
Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Di 28.04.2009
Autor: lisa11

[mm] sin(\alpha [/mm] +10) = [mm] sin(\alpha)*cos(10) [/mm] + [mm] cos(\alpha)*sin(10) [/mm]

[mm] a*(sin(\alpha [/mm] + 10))  = [mm] b*(sin\alpha) [/mm]

einsetzen von oben und auflösen

Bezug
                                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Di 28.04.2009
Autor: statler


> [mm]sin(\alpha[/mm] +10) = [mm]sin(\alpha)*cos(10)[/mm] +
> [mm]cos(\alpha)*sin(10)[/mm]
>  
> [mm]a*(sin(\alpha[/mm] + 10))  = [mm]b*(sin\alpha)[/mm]
>  
> einsetzen von oben und auflösen

Ja, und auch [mm] cos\alpha [/mm] durch [mm] sin\alpha [/mm] ausdrücken



Bezug
                                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Di 28.04.2009
Autor: weduwe


> [mm]sin(\alpha[/mm] +10) = [mm]sin(\alpha)*cos(10)[/mm] +
> [mm]cos(\alpha)*sin(10)[/mm]
>  
> [mm]a*(sin(\alpha[/mm] + 10))  = [mm]b*(sin\alpha)[/mm]
>  
> einsetzen von oben und auflösen

[mm] tan\alpha=\frac{sin\alpha}{coa\alpha}=\frac{sin10}{\frac{b}{a}-cos10} [/mm]


Bezug
                                                
Bezug
Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Mi 29.04.2009
Autor: lisa11

vielen dank der Anstoss genügte die Aufgabe zu lösen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de