www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Dreieck
Dreieck < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:04 Di 20.09.2005
Autor: JROppenheimer

Ich habe diese Frage in keinem anderen Forum gestellt!

Also mir ist das ja ein bisschen peinlich, weil im Grunde sollte das gar kein Problem sein. Aber nach jetzt 8 Wochen Semestereferien habe ich es geschafft, Mathe erfolgreich aus meinem Kopf zu verbannen. Nun hab ich versprochen einer Freundin bei einer Aufgabe zu helfen, jedoch glaube ich, dass sie mit MEINER Lösung nicht besonders viel anfangen kann, weil ich zwar eine finde, die aber SO kompliziert ist, dass das warscheinlich viel einfacher geht. Bei mir ist das immer durch die Brust ins linke Auge ... von daher hoffe ich, dass ihr mir da helfen könnt:

Gegeben sind die Punkte P [mm] \pmat{ -2 \\ 1 } [/mm] und Q [mm] \pmat{ 2 \\ 1 }. [/mm] Kann man einen (oder mehrere) Punkte R auf den Achsen des Koordinatensystems finden, damit PQR ein rechtwinkliges Dreieck ist?

Also grafisch ist das ja gar kein Problem.
Jetzt hab ich mir gedacht, wenn man den Mittlpunkt zwischen P und Q nimmt einen Kreis darum zieht, hat man die Menge aller Punkte die ein rechtwinkliges Dreieck bilden. Aber wird bei dem Dreieck nicht im Gegenuhrzeigersinn benannt? Dann gäbe es ja nur einen Punkt R auf der y-Achse, nämlich der, der im bei [mm] \pmat{ 0 \\ 1.5 }. [/mm]
Das kann man ja sogar per Pythagoras berechnen, oder einfachen Dreiecksformeln, weil man ja nur die Höhe des Dreiecks braucht, oder?

naja also die größte Einsicht kam mir eben beim Schreiben, aber für andere Ideen bin ich trotzdem offen

danke im Voraus J.R.

        
Bezug
Dreieck: Ansätze
Status: (Antwort) fertig Status 
Datum: 10:05 Di 20.09.2005
Autor: Roadrunner

Hallo J.R.!


Ist denn vorgeschrieben, bei welchem Punkt der rechte Winkel zu liegen hat bzw. ist [mm] $\overline{PQ}$ [/mm] als Hypotenuse vorgegeben?


Wenn man jetzt nicht allzu päpstlich umgeht mit der Nomenklatur (Beschriftung gegen den Uhrzeigersinn) gibt es natürlich noch mehr mögliche Punkte.

Ebenso wenn der rechte Winkel auch bei $P_$ oder $Q_$ liegen darf.


> Dann gäbe es ja nur einen Punkt R auf der y-Achse,
> nämlich der, der im bei [mm]\pmat{ 0 \\ 1.5 }[/mm] .

[notok] Hier erhalte ich aber $R \ [mm] \left( \ 0 \ | \ \red{3} \ \right)$ [/mm] ...


> Das kann man ja sogar per Pythagoras berechnen, oder einfachen
> Dreiecksformeln, weil man ja nur die Höhe des Dreiecks
> braucht, oder?

Das mit den Höhen versteh ich gerade nicht ...

  

> naja also die größte Einsicht kam mir eben beim Schreiben,
> aber für andere Ideen bin ich trotzdem offen


Ansonsten kannst du natürlich auch rechnerisch folgendermaßen vorgehen (Annahme: rechter Winkel bei $R_$) :

[mm] $\overline{PR} [/mm] \ [mm] \perp [/mm] \ [mm] \overline{QR}$ $\gdw$ $\overrightarrow{PR}*\overrightarrow{QR} [/mm] \ = \ 0$

[mm] $\vektor{x_R-(-2) \\ y_R-1}*\vektor{x_R-2 \\ y_R-1} [/mm] \ = \ [mm] \left(x_R+2\right)*\left(x_R-2\right) [/mm] + [mm] \left(y_R-1\right)^2 [/mm] \ = \ 0$

Und da $R_$ ja nun auf den Koordinatenachsen liegen soll, kannst Du in zwei Fälle unterscheiden: [1] [mm] $x_R [/mm] \ = \ 0$   bzw.   [2] [mm] $y_R [/mm] \ = \ 0$ .
Anschließend kann man dann jeweils die zugehörigen [mm] $y_R$ [/mm] bzw. [mm] $x_R$ [/mm] ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de