www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Dreiecke im n-Eck?
Dreiecke im n-Eck? < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecke im n-Eck?: Idee?
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 22.01.2008
Autor: Torboe

Aufgabe
Wieviel Dreiecke gibt es, die eine Seite mit dem n-Eck gemeinsam haben?

a) n=6
b) allgemeine Formel für n-Eck

a)

Also Lösung hab ich: [mm] \pmat{ 6 \\ 3 } [/mm] = [mm] 6*5*4\3! [/mm] = 20

Das ist mir jedoch nicht so ganz klar. Ich hab mal versucht mir das grafisch zu veranschaulichen: Wenn ich hergehe und mir ein 6-Eck aufzeichne und alle möglichen Dreiecke einzeichne die genau eine Seite mit dem 6-Eck gemeinsam haben, dann kann ich doch folgendes machen:
Ich zeichne für jede Seite des 6-Ecks jeweils 2 Dreiecke ein. Denn ich ich hab 2 Ecken zur Verfügung, damit nur eine Seite mit dem 6-Eck übereinstimmt. Wenn ich das für alle 6 Seiten mache, komme ich doch auf 12 Möglichkeiten.
Aber die Lösung gibt 20 an.... .


b)
und bei b) hab ich als Lösung [mm] \pmat{ n \\ 3 } [/mm] = n*(n-4) für genau eine gemeinsame kante und [mm] \pmat{ n \\ 3 } [/mm] = n*(n-4)-n für genau 2 gem. Kanten. Nach meinen Überlegungen haut das aber leider auch nicht hin.

Kann mir diesbzgl. paar Denkanstöße geben? Wie man an solche Aufgaben rangeht und wie ich sie lösen kann.

Vielen Dank schonmal!!







        
Bezug
Dreiecke im n-Eck?: Idee...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 Di 22.01.2008
Autor: ardik

Hallo Torboe,

es wird nicht ganz klar, welcher geometrische Zusammenhang zwischen Dreiecken und n-Eck bestehen soll.

Mittelbar - durch Deine Überlegungen - wird klar, dass wohl

a) die Dreiecke genau eine Seite mit dem n-Eck gemeinsam haben sollen;

b) die dritte Ecke des Dreiecks mit einer Ecke des n-Ecks zusammenfallen soll.
Aber sind evtl. auch die Dreiecke erlaubt, deren dritte Ecke im Mittelpunkt des n-Ecks liegt?

Schöne Grüße
ardik

Bezug
                
Bezug
Dreiecke im n-Eck?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Di 22.01.2008
Autor: Torboe

also die 3. ecke des dreiecks soll mit der einer ecke des n-ecks zusammenfallen. und erlaubt sind nur die dreiecke bei denen jedes eck auch ein eck des n-ecks ist.

Bezug
        
Bezug
Dreiecke im n-Eck?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Di 22.01.2008
Autor: Event_Horizon

Hallo!

Mit den Binominalkoeffizenten kommst du da nicht weiter.


Überlege mal so:

Betrachte zunächst nur EINE Seite des n-Ecks, das auch als Grundfläche des Dreiecks dienen soll. Wieviele solcher Dreiecke gibt es denn?

Und dann hat ein n-Eck auch n Seiten, die als Grundfläche dienen können. Allerdings würde man dabei einige Dreiecke mehrfach zählen, und zwar die, die zwei Seiten mit dem n-Eck gemeinsam haben. Die muß man noch abziehen. Man kommt dann auf eine sehr einfache Formel.

Bezug
                
Bezug
Dreiecke im n-Eck?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Di 22.01.2008
Autor: Torboe

Betrachte zunächst nur EINE Seite des n-Ecks, das auch als Grundfläche des Dreiecks dienen soll. Wieviele solcher Dreiecke gibt es denn?

Also wenn ich alle Dreiecke zähle, auch die, die zwei Seiten mit dem n-Eck gemeinsam haben, komm ich auf n-2 Dreiecke (für [mm] n\ge3) [/mm] für EINE Seite.

Und dann hat ein n-Eck auch n Seiten, die als Grundfläche dienen können. Allerdings würde man dabei einige Dreiecke mehrfach zählen, und zwar die, die zwei Seiten mit dem n-Eck gemeinsam haben. Die muß man noch abziehen. Man kommt dann auf eine sehr einfache Formel.

Ok. Also wenn ein n-Eck n Seiten besitzt, dann wären es mit obiger Überlegung n*(n-2) Dreiecke. Abzüglich derer mit zwei gemeinsamen Seiten mit dem Dreieck: Davon gibt es n-Stück. Also komm ich auf n*(n-2)-n Dreiecke?!

Aber damit hab ich doch jetzt nur gezählt, wieviele Dreiecke ein n-Eck enthalten kann oder??
Gefragt waren aber doch die Anzahl der Dreiecke die EINE Seite mit dem n-Eck gemeinsam haben oder ZWEI Seiten mit dem n-Eck gemeinsam haben.
Die Lösung die ich oben angegeben habe stammt übrigens vom Prof und der hat das mit Binomialkoeffizient gelöst, sollte deswegen eigentlich stimmen... . hmmm.

Bezug
                        
Bezug
Dreiecke im n-Eck?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Di 22.01.2008
Autor: Event_Horizon

Hallo!

Genau so habe ich das gemeint.


Nun, die Anzahl der Dreiecke, die genau zwei Seiten mit dem n-Eck gemeinsam haben, beträgt naturgemäß n. Da gibts nix dran zu rütteln.


Die Anzahl, die ein oder zwei Seiten gemeinsam haben, berechnet man mit der Formel n*(n-2)-n=n*(n-3)


Und für die Anzahl der Dreiecke, die genau eine Seite gemeinsam haben, kannst du nochmal n abziehen, und kommst auf n*(n-4)


Dreiecke, deren Ecken mit denen des n-Ecks zusammenfallen, die jedoch keine Seite gemeinsame Seite mit dem n-Eck haben, werden von der Rechnung NICHT berücksichtigt.


Und wenn ich mir das für ein Sechseck überlege, komme ich auf 12 Dreiecke mit genau einer zusammenfallenden Seite, und demnach 18 mit ein oder zwei. (Das ist noch so übersichtlich, daß man das in der Vorstellung hinbekommt.)

Ich sehe da ehrlich gesagt nicht, wie man auf 20 kommen könnte, oder wie meine Formel mit dem Binominalkoeffizienten in Einklang gebracht werdenkönnte. Die Anzahl der Faktoren nimmt da ja immer weiter zu.

Oder sprechen wir doch von völlig unterschiedlichen Aufgabenstellungen?

Vielleicht hat auch der Prof zu kompliziert gedacht?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de