www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Dreieckskonstruktion
Dreieckskonstruktion < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieckskonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:43 Fr 07.10.2011
Autor: pi-roland

Aufgabe
Von einem Dreieck sind die Länge der Winkelhalbierenden des Winkels BAC und die Längen der Seiten a und c gegeben. Wie konstruiert man ein solches Dreieck?


Hallo Geometrieexperten,

leider scheiter ich bei dieser Aufgabe auf voller Linie. Probiert man etwas herum, scheint es nur eine Lösung zu geben, so dass ich davon ausgehe, dass das Problem eindeutig lösbar ist.
Aber wie löst man es?
Ist vielleicht die Tatsache, dass eine Winkelhalbierende die gegenüberliegende Seite im Verhältnis der anliegenden teilt, zur Konstruktion nötig?
Oder nützt der Peripheriewinkelsatz etwas?
Ich bin ideenlos und hoffe, das ihr mir helfen könnt.
Mit freundlichen Grüßen,

pi-roland.

PS: Das sollte eher eine Übungsaufgabe sein, aber ich sehe keine Möglichkeit sie als solche zu deklarieren.

        
Bezug
Dreieckskonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Fr 07.10.2011
Autor: pi-roland

Hallo nochmal!

Wie sich herausgestellt hat, ist diese Aufgabe nicht lösbar - schade eigentlich.
Wenn mir jemand erklären kann, warum sie nicht konstruierbar ist, wäre ich sehr dankbar.
Mit freundlichen Grüßen,

Roland.

Bezug
        
Bezug
Dreieckskonstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Fr 07.10.2011
Autor: leduart

hallo pi roland
nenn die 2 Abschnitte auf a die die WH teilt a1 und a2
den winkel bei B [mm] \beta. [/mm] die gegebenen Größen a,b,w
Dann hast du
a1+a2=a;  a1/a2=c/b also [mm] b^2/c^2=(a-a1)^2/a1^2 [/mm]
ferner
I.  [mm] w^2=c^2+a1^2-2c*a1*cos\beta [/mm]
II. [mm] b^2=c^2+a^2-2a*c*cos\beta [/mm]
ersetze in 2 2c*cos^beta durch I
setz die 2 Gl für [mm] b^2 [/mm] gleich
ich machs dann noch dimensionslos (division durch [mm] c^2 [/mm] und finde eine Gleichung 3 ten Grades für v= a/a1
könnte man das problem mit Zirkel und Lineal lösen, so konnte man eine gl 3. ten Grases damit lösen! Dass das unmöglich ist ist dir klar?
Gruss leduart



Bezug
                
Bezug
Dreieckskonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:25 So 09.10.2011
Autor: pi-roland

Vielen Dank für die Antwort.

Leider kann ich deinen Ansatz noch nicht ganz nachvollziehen, aber ich bin recht zuversichtlich, dass mir der Schritt mit dem [mm] b^2 [/mm] gleichsezten noch einleuchtet. Bei mir bleibt da immer ein cos übrig.
Und ja, mir ist klar, dass man Gleichungen dritten Grades nicht konstruktiv lösen kann - wenn ich dort anglangt bin, sehe ich alles ein.
Danke erstmal für den Ansatz!
Bis zum nächsten Problem,

Roland.

Bezug
                        
Bezug
Dreieckskonstruktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 So 09.10.2011
Autor: weduwe

man kann auch nach der seite b umstellen, was mit [mm] w=w_\alpha [/mm] auf demselben weg zu folgender gleichung führt:

[mm] f(b)=b^3+b^2\cdot(2c-\frac{w^2}{c})+b\cdot (c^2-2\cdot w^2-a^2)-c\cdot w^2=0 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de