www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Dreiecksmatrix
Dreiecksmatrix < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksmatrix: Ansatz
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 05.12.2012
Autor: rolo4

Aufgabe
Eine strikte obere Dreiecksmatrix ist eine n x n Matrix [mm] A=(a_{ij}) [/mm] mit [mm] a_{ij}=0 [/mm] für alle i [mm] \ge [/mm] j
Sei V ein n-dimensionaler K-Vektorraum mit Unterräumen
[mm] V_{0}=(0) \subseteq V_{n}=V [/mm] mit [mm] dim(V_{i})=i [/mm]
Sei f: V-> V linear mit  [mm] f(V_{i}) \subseteq V_{i-1} [/mm] für alle i=1,...,n

Sei nun A eine strikte obere Dreiecksmatrix. Zeigen Sie, dass für [mm] V_{i}= [/mm] Span [mm] (e_{1},...,e_{i}) \subset K^{n} [/mm] gilt [mm] L_{A}(V_{i}) \subset V_{i-1} [/mm] und folgen Sie, dass [mm] A^{n}=0 [/mm] gilt


Im ersten Teil der Aufgabe haben wir bereits per Induktion gezeigt, dass [mm] f^{k}(V_{n}) [/mm] = f [mm] \circ [/mm] ... [mm] \circ f(V_{n}) \subset V_{n-k} [/mm] für k [mm] \le [/mm] n sodass [mm] f^{n} [/mm] = f [mm] \circ [/mm] ... [mm] \circ [/mm] f die 0-Abbildung ist

Kann ich damit argumentieren dass der [mm] span(A^{n}) [/mm] immer kleiner wird und dann für i=n 0 wird?

        
Bezug
Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mi 05.12.2012
Autor: fred97


> Eine strikte obere Dreiecksmatrix ist eine n x n Matrix
> [mm]A=(a_{ij})[/mm] mit [mm]a_{ij}=0[/mm] für alle i [mm]\ge[/mm] j
>  Sei V ein n-dimensionaler K-Vektorraum mit Unterräumen
>  [mm]V_{0}=(0) \subseteq V_{n}=V[/mm] mit [mm]dim(V_{i})=i[/mm]
>  Sei f: V-> V linear mit  [mm]f(V_{i}) \subseteq V_{i-1}[/mm] für

> alle i=1,...,n
>  
> Sei nun A eine strikte obere Dreiecksmatrix. Zeigen Sie,
> dass für [mm]V_{i}=[/mm] Span [mm](e_{1},...,e_{n}) \subset K^{n}[/mm] gilt

1. Was sind den die [mm] e_{1},...,e_{n} [/mm]

2. An der Def. von [mm] V_i [/mm] ist was faul: so wie es da oben steht , sind alle [mm] V_i [/mm] gleich.

Ich vermute: [mm]V_{i}=[/mm] Span [mm][mm] (e_{1},...,e_{i}) [/mm]

Kläre also was die  [mm] e_{1},...,e_{n} [/mm] sind. Dann dürfte es nicht schwer sein die Inklusion

     $ [mm] L_{A}(V_{i}) \subset V_{i-1} [/mm] $

zu zeigen.

FRED


> [mm]L_{A}(V_{i}) \subset V_{i-1}[/mm] und folgen Sie, dass [mm]A^{n}=0[/mm]
> gilt
>  Im ersten Teil der Aufgabe haben wir bereits per Induktion
> gezeigt, dass [mm]f^{k}(V_{n})[/mm] = f [mm]\circ[/mm] ... [mm]\circ f(V_{n}) \subset V_{n-k}[/mm]
> für k [mm]\le[/mm] n sodass [mm]f^{n}[/mm] = f [mm]\circ[/mm] ... [mm]\circ[/mm] f die
> 0-Abbildung ist
>  
> Kann ich damit argumentieren dass der [mm]span(A^{n})[/mm] immer
> kleiner wird und dann für i=n 0 wird?


Bezug
                
Bezug
Dreiecksmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 05.12.2012
Autor: rolo4

[mm] e_{i} [/mm] sind die Basisvektoren der Standardbasis
Habe die Definition nochmal angeschaut- da dürfte alles korrekt abgetippt sein

Bezug
                        
Bezug
Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mi 05.12.2012
Autor: fred97


> [mm]e_{i}[/mm] sind die Basisvektoren der Standardbasis

O.K., das hätten wir geklärt.


>  Habe die Definition nochmal angeschaut- da dürfte alles
> korrekt abgetippt sein

Das

   $ [mm] V_{i}= [/mm] $ Span $ [mm] (e_{1},...,e_{n}) \subset K^{n} [/mm] $

aber wohl kaum.

FRED


Bezug
                                
Bezug
Dreiecksmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 05.12.2012
Autor: rolo4

Entschuldigung, Index geht bis i und nicht bis n

Bezug
                                        
Bezug
Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Mi 05.12.2012
Autor: fred97


> Entschuldigung, Index geht bis i und nicht bis n

Dann mußt Du also zeigen:  $ [mm] L_{A}(V_{i}) \subset V_{i-1} [/mm] $

Leg los !

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de