Dreiecksmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:21 Di 14.07.2009 | Autor: | Unk |
Aufgabe | Gegeben seien [mm] U_1,u_2 [/mm] orthogonale [mm] (n\times [/mm] n)-Matrizen und [mm] R_1,R_2 [/mm] obere Dreiecksmatrizen mit positiven Diagonalkoeffizienten.
Beweisen Sie folgenden Sachverhalt: Gilt [mm] U_1R_1=U_2R_2, [/mm] dann ist [mm] U_1=U_2 [/mm] und [mm] R_1=R_2. [/mm] |
Hallo,
ich habe hier versucht, da die orthogonalen Matrizen invertierbar sind, hiermit die Gleichung irgendwie umzuformen. Natürlich kommt man damit nicht auf das Ergebnis.
Es muss also irgendwie anders gehen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:07 Di 14.07.2009 | Autor: | felixf |
Hallo!
> Gegeben seien [mm]U_1,u_2[/mm] orthogonale [mm](n\times[/mm] n)-Matrizen und
> [mm]R_1,R_2[/mm] obere Dreiecksmatrizen mit positiven
> Diagonalkoeffizienten.
> Beweisen Sie folgenden Sachverhalt: Gilt [mm]U_1R_1=U_2R_2,[/mm]
> dann ist [mm]U_1=U_2[/mm] und [mm]R_1=R_2.[/mm]
>
> ich habe hier versucht, da die orthogonalen Matrizen
> invertierbar sind,
und die oberen Dreiecksmatrizen ebenfalls, da die Diagonaleintraege nicht 0 sind!
> hiermit die Gleichung irgendwie
> umzuformen. Natürlich kommt man damit nicht auf das
> Ergebnis.
Doch, es liefert schonmal einen guten Anfang.
Damit ist naemlich [mm] $U_2^{-1} U_1 [/mm] = [mm] R_2 R_1^{-1}$. [/mm] Auf der linken Seite steht eine orthogonale Matrix, auf der rechen eine obere Dreiecksmatrix.
Jetzt ueberleg dir folgendes:
(i) die obere Dreiecksmatrix auf der rechten Seite hat positive Diagonaleintraege;
(ii) die einzigen oberen Dreiecksmatrizen, die orthogonal sind, sind Diagonalmatrizen mit Diagonaleintraegen [mm] $\pm [/mm] 1$.
Wenn du beides kombinierst, bekommst du [mm] $U_1 [/mm] = [mm] U_2$ [/mm] und [mm] $R_1 [/mm] = [mm] R_2$.
[/mm]
LG Felix
|
|
|
|