www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Dreiecksmatrizen, positiveDiag
Dreiecksmatrizen, positiveDiag < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksmatrizen, positiveDiag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Mo 25.02.2013
Autor: Lu-

Aufgabe
Seien [mm] R_1 [/mm] , [mm] R_2 [/mm] zwei obere Dreiecksmatrizen mit positiven reellen Diagonaleinträgen.
Ich verstehe nicht wieso: [mm] (R_2 (R_1)^{-1} )^{\*} (R_2 (R_1)^{-1} [/mm] ) [mm] =I_n [/mm]

wobei [mm] \* [/mm] bedeutet: [mm] A^{\*} [/mm] = [mm] \overline{A}^t [/mm]
t.. transponiert

Kann mir da vlt wer weiterhelfen?
Ich weiß dass [mm] R_2 (R_1)^{-1} [/mm] selbst eine obere Dreiecksmatrizen mit positiven reellen Diagonaleinträgen ist, weil dies eine gruppe ist. Aber die Gültigkeit von obigen ist trotzdem nicht klar.
Danke ;)

        
Bezug
Dreiecksmatrizen, positiveDiag: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 26.02.2013
Autor: steppenhahn

Hallo,


> Seien [mm]R_1[/mm] , [mm]R_2[/mm] zwei obere Dreiecksmatrizen mit positiven
> reellen Diagonaleinträgen.
>  Ich verstehe nicht wieso: [mm](R_2 (R_1)^{-1} )^{\*} (R_2 (R_1)^{-1}[/mm]
> ) [mm]=I_n[/mm]
>  
> wobei [mm]\*[/mm] bedeutet: [mm]A^{\*}[/mm] = [mm]\overline{A}^t[/mm]
>  t.. transponiert


>  Ich weiß dass [mm]R_2 (R_1)^{-1}[/mm] selbst eine obere
> Dreiecksmatrizen mit positiven reellen Diagonaleinträgen
> ist, weil dies eine gruppe ist.

Genau. Das zeigt aber, dass der ganze zweite Faktor [mm] $(R_2 \cdot R_1^{-1})$ [/mm] eine obere Dreiecksmatrix ist. Die Inverse des zweiten Faktors muss also auch eine obere Dreiecksmatrix sein.

Es wird behauptet, dass bei dem Produkt die Identität herauskommt,
d.h. der erste Faktor [mm] $(R_2 \cdot R_1^{-1})^{\*}$ [/mm] müsste die Inverse zum ersten Faktor sein.

Aber der erste Faktor ist eine untere Dreiecksmatrix (wegen dem Transponieren). Die obige Formel gilt also im Allgemeinen nicht.

D.h. schaue nochmal nach, ob du die Formel richtig abgeschrieben hast.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de